
ARS
Release 0.5b1

Germán Larraín

February 28, 2017

Contents

1 Introduction 3
1.1 So simple . 3
1.2 Official website . 3
1.3 Releases . 4
1.4 News . 4

2 Contents 5
2.1 Installation . 5
2.2 About ARS . 9
2.3 External links . 10
2.4 FAQ . 10
2.5 ars . 10
2.6 Changelog . 54
2.7 Language election . 54
2.8 Python . 59
2.9 Developers FAQ . 60
2.10 About the documentation . 61

3 Indices and tables 63

Python Module Index 65

i

ii

ARS, Release 0.5b1

Note: This software and its documentation are currently under development so they will be subject to changes.
Contributions are welcome!

Contents 1

ARS, Release 0.5b1

2 Contents

CHAPTER 1

Introduction

Welcome! This is the documentation of ARS 0.5, last updated on February 28, 2017.

ARS is written in a marvelous programming language called Python. One of the many features that make it great
(and popular) is its documentation. Taking that into consideration, many sections herein were taken from the official
Python documentation.

So simple

To create and run your first simulation, a few lines of code are enough! Execute the following script (press key q or e
to end the simulation)

from ars.app import Program

class FallingBall(Program):

def create_sim_objects(self):
add_sphere's arguments: radius, center, density
self.sim.add_sphere(0.5, (1, 10, 1), density=1)

sim_program = FallingBall()
sim_program.start()
sim_program.finalize()

Official website

The repository is hosted at BitBucket where you will find the source code and the issue tracker. We would love that
you request features or improvements for ARS. Also, bug reports are more than welcome.

Because we like the Python community and the tools they use, it is registered in PyPI (Python Package Index). Al-
though useful for organizing packages, the main benefit is to be able to install (and upgrade) ARS using the pip
program. It takes just 3 words:

$ pip install ARS

(well, you might have to prepend sudo if you are using Linux and running as a user without the required priveges.
Bummer, that’s 4 words now...)

For support, check the Google group and join if you want to post a message.

3

http://www.python.org/
http://docs.python.org/
http://docs.python.org/
https://bitbucket.org/glarrain/ars
https://bitbucket.org/glarrain/ars/src
https://bitbucket.org/glarrain/ars/issues
http://pypi.python.org/pypi/ARS/
http://groups.google.com/group/ars-project

ARS, Release 0.5b1

Releases

version date revision
0.5b1 2013.12.13 8cde845244ae
0.5a2 2013.10.21 9fa5876718f0
0.5a1 2013.09.25 60c96b5b55ba
0.4a1 2013.04.13 f9c1381290bc
0.3a1 2012.10.17 b9190db2b909

News

What has happened lately...

4 Chapter 1. Introduction

https://bitbucket.org/glarrain/ars/changeset/8cde845244ae
https://bitbucket.org/glarrain/ars/changeset/9fa5876718f0
https://bitbucket.org/glarrain/ars/changeset/60c96b5b55ba
https://bitbucket.org/glarrain/ars/changeset/f9c1381290bc
https://bitbucket.org/glarrain/ars/changeset/b9190db2b909

CHAPTER 2

Contents

Installation

ARS itself is really easy to install :) but some of its Prerequisites are not :(, depending on which operating system is
used. The best option is Ubuntu, specially its 12.04 (i.e. Precise Pangolin) version. For that, follow the instructions
in Ubuntu & Debian. If you have another version of Ubuntu, steps may be the same or very similar. For other Linux
distros, the steps regarding apt-get will probably change.

Mac OSX is untested but it should work because all the required software has been reported to work on it. ARS itself
is pure Python and OS-agnostic thus everything should work out if you comply with the requirements.

Microsoft Windows is the OS less friendly to ARS, as well as to many other open source software. Nonetheless, it is
very popular so we got it to run there too! Instructions for both XP and 7 are here: Microsoft Windows.

Prerequisites

The software required by ARS to run (or install other parts) is listed in the following sections.

Note: On a *NIX system, some actions, such as:

• apt-get install

• make install

• python setup.py install

• pip install

require root permission because they affect it as a whole. In those cases prepend sudo.

Python-related packages

Obviously you need Python (i.e. the interpreter and the basic libraries) but also its header files, static library, and the
‘update-python-modules’. Don’t be scared by those names, they are quite common for software, even if you had not
heard them before.

apt-get install python python-dev python-support

5

ARS, Release 0.5b1

Other Python packages

Numpy (Numerical Python) is a very popular package for scientific work. It adds “support for large, multi-dimensional
arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.”
(Wikipedia)

Cython is required to build ODE’s Python bindings. It “is a language that makes writing C extensions for the Python
language as easy as Python itself. It is based on the well-known Pyrex, but supports more cutting edge functionality
and optimizations.” (cython.org)

apt-get install python-numpy cython

Visualization Toolkit (VTK)

“The Visualization Toolkit (VTK) is an open-source, freely available software system for 3D computer graphics, image
processing and visualization. VTK consists of a C++ class library and several interpreted interface layers including
Tcl/Tk, Java, and Python.” (vtk.org)

apt-get install libvtk5.8 python-vtk

Note: VTK source code packages include the Python wrappers but the default setup for most systems will not install
them. In general, the binary distributions of VTK do not include the Python wrappers.

Open Dynamics Engine (ODE)

“ODE is an open source, high performance library for simulating rigid body dynamics. It is fully featured, stable,
mature and platform independent with an easy to use C/C++ API. It has advanced joint types and integrated collision
detection with friction. ODE is useful for simulating vehicles, objects in virtual reality environments and virtual
creatures. It is currently used in many computer games, 3D authoring tools and simulation tools.” (ode.org)

Library

After unpacking archive ode-0.12.tar.gz (or .zip, .tar.bz2):

cd ode-0.12
./configure --enable-double-precision --with-trimesh=opcode --enable-new-trimesh --enable-shared
make
make install

Warning: If you downloaded ODE’s source code from its Subversion repository instead of getting a release
version you must ‘bootstrap’ the process by running sh autogen.sh before configure.

Python bindings

Run the following at the command line:

cd bindings/python/
python setup.py install

6 Chapter 2. Contents

http://numpy.scipy.org/
http://en.wikipedia.org/wiki/NumPy
http://www.cython.org/
http://www.vtk.org/
http://ode-wiki.org/wiki/

ARS, Release 0.5b1

Standard installation

Once all the prerequisites are satisfied, ARS can be installed in any of these simple alternatives. To install ARS we
recommend you to use pip.

pip

It “is a tool for installing and managing Python packages, such as those found in the Python Package Index. It’s a
replacement for easy_install.” (pip-installer.org)

This program is not part of standard Python installations. However, it is widely used because it has easy_install‘s
functionality plus uninstall and upgrade features.

pip install ARS

Easy Install

It “is a Python module (easy_install) bundled with setuptools that lets you automatically download, build,
install, and manage Python packages.” (packages.python.org/distribute)

easy_install ARS

setup.py install

This is the standard way to install a module distribution. It uses the official and built-in distutils package.

For this, you need to download ARS, extract the contents from the archive (e.g. .zip, .tar.bz2), and run (from
its root directory):

python setup.py install

Ubuntu & Debian

Ubuntu and Debian are distributions (‘distros’) of GNU/Linux (a.k.a. Linux).

Note: Ubuntu is Debian-based thus they share much code and packages.

For these OSs, the complete list of steps is available (and has been thoroughly checked), including ODE’s compila-
tion and installation, which are the major obstacles in the process and may scare users unaccustomed to the command
line and software compilation.

Ubuntu 12.04

Ubuntu’s latest long-term-support release is 12.04 (a.k.a. Precise Pangolin) and was published on April, 2012.

Run the following commands in sequence and you’ll have ARS ready to go. They are grouped as: a) Python basic
packages, b) VTK, c) ODE, d) ARS:

sudo apt-get install python-dev python-support python-pip
sudo apt-get install python-numpy cython

sudo apt-get install libvtk5.8 python-vtk

sudo apt-get install make autoconf automake libtool g++ pkg-config
wget https://downloads.sourceforge.net/project/opende/ODE/0.12/ode-0.12.tar.bz2
tar xf ode-0.12.tar.bz2
cd ode-0.12/

2.1. Installation 7

http://www.pip-installer.org/
http://packages.python.org/distribute/easy_install.html
http://pypi.python.org/pypi/ARS/
http://www.ubuntu.com/
http://www.debian.org/
https://help.ubuntu.com/12.04/ubuntu-help/

ARS, Release 0.5b1

./configure --enable-double-precision --with-trimesh=opcode --enable-new-trimesh --enable-shared
make
sudo make install
cd bindings/python/
sudo python setup.py install
sudo ldconfig

sudo pip install ARS

Notice how ODE is the software piece that takes more commands and time to install. Fortunately, ARS is the exact
opposite.

Note: Not all users will need to run ldconfig but it doesn’t hurt if you do. See ODE Import Error for more
information.

Debian 7

Debian’s next stable version is 7 (a.k.a. Wheezy) and is about to be released in the first half of 2013. Debian 6 (a.k.a.
Squeeze) had old versions of Python and VTK thus was not considered for these ‘easy install’ instructions.

The required steps are identical as those above, with one caveat:

Warning: Debian might not have sudo available or the OS user might not be in the sudo group. The solution
(you need the root user password) for these is:

su
apt-get install sudo
adduser <username> sudo
exit

and then logout and login again.
An alternative is to replace sudo <command> with su -c ’<command>’.

Microsoft Windows

Download and install the requirements:

• Numpy (mirror)

• ODE (mirror)

• VTK (mirror)

Now download the MS Windows installer of ARS from PyPI and install it.

Troubleshooting

ODE

Import error 1

8 Chapter 2. Contents

http://www.debian.org/releases/wheezy/
http://www.debian.org/releases/squeeze/
http://www.debian.org/releases/squeeze/
http://sourceforge.net/projects/arsproject/files/Install%20on%20Windows/libraries/numpy-1.6.2-win32-superpack-python2.7.exe
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
http://sourceforge.net/projects/arsproject/files/Install%20on%20Windows/libraries/ode-0.12.win32-py2.7.exe
http://www.lfd.uci.edu/~gohlke/pythonlibs/#ode
http://sourceforge.net/projects/arsproject/files/Install%20on%20Windows/libraries/VTK-5.8.0.win32-py2.7.exe
http://www.lfd.uci.edu/~gohlke/pythonlibs/#vtk
https://pypi.python.org/pypi/ARS

ARS, Release 0.5b1

>>> import ode
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ImportError: No module named ode

It means the ode module could not be found by the Python interpreter. If the mod-
ule (file ode.so) was built correctly it will be located in a directory named something like
~/ode-0.12/bindings/python/build/lib.linux-x86_64-2.7/. If that’s the case, you only
forgot to execute:

~/ode-0.12/bindings/python$ sudo python setup.py install

which, among other things, copies build/lib.linux-x86_64-2.7/ode.so to directory
/usr/local/lib/python2.7/dist-packages.

Import error 2

It means the ode module could not be imported by the Python interpreter.

>>> import ode
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: libode.so.3: cannot open shared object file: No such file or directory

This error is saying that ODE needs access access to the compiled library (as a shared object, e.g. libode.so.3)
but can’t find it. It is not about whether sys.path contains or not the location of the library.

Dynamically linked libraries are looked up in the system library path, i.e. the directories included in the
LD_LIBRARY_PATH environment variable. However, instead of manually fixing this value, try running ldconfig
–its job is to “configure dynamic linker run-time bindings” (man page)– and import ode again. Hopefully you’ll get
no output, which means it was imported correctly.

VTK

vtkXOpenGLRenderWindow

If VTK looks to be installed correctly (e.g. it can be imported with no errors) but while running a program using VTK
you get an error mentioning vtkXOpenGLRenderWindow, then probably you have an error related to your video
card, its drivers and OpenGL. You can test the latter works fine by running the programs glxgears or glxinfo at
the command line (if they are not found you can install them with sudo apt-get install mesa-utils).

Note: If you can’t get OpenGL to work, then there is no way VTK will work in your system, and probably most
visualization software won’t too.

About ARS

History

This project was conceived, designed and started in RAL (Robotics and Automation Laboratory) at PUC‘s (Pontificia
Universidad Católica de Chile) engineering school.

2.2. About ARS 9

http://manpages.ubuntu.com/manpages/precise/en/man8/ldconfig.8.html
http://en.wikipedia.org/wiki/OpenGL
http://ral.ing.puc.cl/
http://www.uc.cl/
http://www.ing.puc.cl/

ARS, Release 0.5b1

External links

• ARS is registered at PyPI (Python Package Index).

• Its code is managed in a Mercurial repository hosted at Bitbucket.

• The documentation is hosted at ReadTheDocs and it is generated dynamically after each commit to the reposi-
tory.

• RAL (Robotics and Automation Laboratory) is the organization under which this project was conceived and
also obtained funds for it.

• A page in Ohloh tracks code commits and makes some analyses and estimations of the project.

• Another page in Freecode does sometings similar.

item URL
Code repository Bitbucket
Source code https://bitbucket.org/glarrain/ars/src
Downloads 1 https://bitbucket.org/glarrain/ars/downloads
Downloads 2 http://sourceforge.net/projects/arsproject/files/
Downloads 3 PyPI
Issue tracker IssueTracker
Mailing list GoogleGroup
PyPI PyPI
SourceForge SourceForge
Ohloh Ohloh
Freecode Freecode
Crate.io Crate

FAQ

Release 0.5

Date February 28, 2017

Well, there aren’t many yet :)

ars

ars Package

ars Package

ARS is a physically-accurate robotics simulator written in Python. It’s main purpose is to help researchers to develop
mobile manipulators and, in general, any multi-body system. It is open-source, modular, easy to learn and use, and
can be a valuable tool in the process of robot design, in the development of control and reasoning algorithms, as well
as in teaching and educational activities.

get_version(*args, **kwargs)

10 Chapter 2. Contents

http://pypi.python.org/pypi/ARS/
https://bitbucket.org/glarrain/ars
http://ars-project.readthedocs.org
http://ral.ing.puc.cl/
https://www.ohloh.net/p/ars-project
https://freecode.com/projects/ars
https://bitbucket.org/glarrain/ars
https://bitbucket.org/glarrain/ars/src
https://bitbucket.org/glarrain/ars/downloads
http://sourceforge.net/projects/arsproject/files/
http://pypi.python.org/pypi/ARS/
https://bitbucket.org/glarrain/ars/issues
http://groups.google.com/group/ars-project
http://pypi.python.org/pypi/ARS/
http://sourceforge.net/projects/arsproject/
https://www.ohloh.net/p/ars-project
https://freecode.com/projects/ars
https://crate.io/packages/ARS/

ARS, Release 0.5b1

constants Module

convert_color(R_int, G_int, B_int)

exceptions Module

ARS’s exceptions class hierarchy.

exception ArsError(msg=None)
Bases: exceptions.Exception

Base class for exceptions in this library.

Attributes: msg – explanation of the error

exception JointError(joint, msg=None)
Bases: ars.exceptions.PhysicsEngineException

Exception raised for errors related to physical joints.

Attributes: joint – joint in which the error occurred msg – explanation of the error

exception PhysicsEngineException(msg=None)
Bases: ars.exceptions.ArsError

Exception raised for errors in a physics engine.

Attributes: msg – explanation of the error

exception PhysicsObjectCreationError(type_, msg=None)
Bases: ars.exceptions.PhysicsEngineException

Exception raised for errors in physics-engine objects creation.

Attributes: type – type of the object being created msg – explanation of the error

Subpackages

app Package

app Package Main package of the software. It contains the Program class which is the core application controller.

class ActionMap
Bases: object

add(key, value, repeat=False)

call(key)

get(key, default=None)

get_function(key)

has_key(key)

is_repeat(key)

class Program
Bases: object

Main class of ARS.

2.5. ars 11

ARS, Release 0.5b1

To run a custom simulation, create a subclass. It must contain an implementation of the ‘create_sim_objects’
method which will be called during the simulation creation.

To use it, only two statements are necessary:

•create an object of this class

>>> sim_program = ProgramSubclass()

•call its ‘start’ method

>>> sim_program.start()

Constructor. Defines some attributes and calls some initialization methods to:

•set the basic mapping of key to action,

•create the visualization window according to class constants,

•create the simulation.

BACKGROUND_COLOR = (1, 1, 1)

CAMERA_POSITION = (10, 8, 10)

FLOOR_BOX_SIZE = (10, 0.01, 10)

FPS = 50

STEPS_PER_FRAME = 50

WINDOW_POSITION = (0, 0)

WINDOW_SIZE = (1024, 768)

WINDOW_TITLE = ‘ARS simulation’

WINDOW_ZOOM = 1.0

create_screenshot_recorder(base_filename, periodically=False)
Create a screenshot (of the frames displayed in the graphics window) recorder.

Each image will be written to a numbered file according to base_filename. By default it will create
an image each time record_frame() is called. If periodically is True then screenshots will be
saved in sequence. The time period between each frame is determined according to FPS.

create_sim_objects()
This method must be overriden (at least once in the inheritance tree) by the subclass that will instatiated to
run the simulator.

It shall contain statements calling its ‘sim’ attribute’s methods for adding objects (e.g. add_sphere).

For example:

>>> self.sim.add_sphere(0.5, (1,10,1), density=1)

create_simulation(add_axes=True, add_floor=True)
Creates an empty simulation and:

1.adds basic simulation objects (add_basic_simulation_objects()),

2.(if add_axes is True) adds axes to the visualization at the coordinates-system origin,

3.(if add_floor is True) adds a floor with a defined normal vector and some visualization pa-
rameters,

12 Chapter 2. Contents

ARS, Release 0.5b1

4.calls create_sim_objects() (which must be implemented by subclasses),

5.gets the actors representing the simulation objects and adds them to the graphics adapter.

finalize()
Finalize the program, deleting or releasing all associated resources.

Currently, the following is done:

•the graphics engine is told to ars.graphics.base.Engine.finalize_window()

•all attributes are set to None or False

A finalized program file cannot be used for further simulations.

Note: This method may be called more than once without error.

on_action_selection(key)
Method called after an actions is selected by pressing a key.

on_pre_frame()
This method will be called before each visualization frame is created. It is meant to be, optionally, imple-
mented by subclasses.

on_pre_step()
This method will be called before each integration step of the simulation. It is meant to be, optionally,
implemented by subclasses.

record_frame()
Record a frame using a screenshot recorder.

If frames are meant to be written periodically, a new one will be recorded only if enough time has elapsed,
otherwise it will return False. The filename index will be time / period.

If frames are not meant to be written periodically, then index equals simulator’s frame number.

reset_simulation()
Resets the simulation by resetting the graphics adapter and creating a new simulation.

set_key_2_action_mapping()
Creates an Action map, assigns it to key_press_functions and then adds some (key, function
tuples.

start()
Starts (indirectly) the simulation handled by this class by starting the visualization window. If it is closed,
the simulation ends. It will restart if do_create_window has been previously set to True.

graphics Package

base Module
class Axes(pos=(0, 0, 0), rot=None, cylinder_radius=0.05)

Bases: ars.graphics.base.Entity
class Body(center, rot)

Bases: ars.graphics.base.Entity

Entity representing a defined body with a given color.

get_color()

set_color(color)

2.5. ars 13

ARS, Release 0.5b1

class Box(size, pos, rot=None)
Bases: ars.graphics.base.Body

class Capsule(length, radius, center, rot=None, resolution=10)
Bases: ars.graphics.base.Body

class Cone(height, radius, center, rot=None, resolution=100)
Bases: ars.graphics.base.Body

Constructor.

Parameters resolution (int) – it is the circumferential number of facets

class Cylinder(length, radius, center, rot=None, resolution=10)
Bases: ars.graphics.base.Body

class Engine(*args, **kwargs)
Bases: object

Abstract class. Not coupled (at all) with VTK or any other graphics library

add_object(obj)
Add obj to the visualization controlled by this adapter.

Parameters obj (Body) –

add_objects_list(obj_list)

finalize_window()
Finalize window and remove/clear associated resources.

remove_object(obj)
Remove obj from the visualization controlled by this adapter.

Parameters obj (Body) –

reset()

restart_window()

start_window(on_idle_callback, on_reset_callback, on_key_press_callback)

class Entity(pos, rot)
Bases: object

Renderable and movable object.

It has position and orientation. The underlying object is actor, which connects to the real entity handled by
the graphics library in use.

actor

adapter = None

set_pose(pos, rot)

class ScreenshotRecorder(base_filename)
Bases: object

calc_filename(index=1)
Calculate a filename using index for a new image.

Parameters index (int) – image’s index to use for filename calculation

Returns image’s filename

Return type str

14 Chapter 2. Contents

ARS, Release 0.5b1

file_extension = None

write(index, time)
Write render-window’s currently displayed image to a file.

The image format (thus the file extension too) to use must be defined by the implementation.

Image’s filename is determined by calc_filename().

Parameters

• index (int) – image’s index to use for filename calculation

• time –

class Sphere(radius, center, rot=None, phi_resolution=50, theta_resolution=50)
Bases: ars.graphics.base.Body

Constructor.

Parameters

• phi_resolution (int) – resolution in the latitude (phi) direction

• theta_resolution (int) – resolution in the longitude (theta) direction

class Trimesh(vertices, faces, pos=None, rot=None)
Bases: ars.graphics.base.Body

vtk_adapter Module
class Axes(pos=(0, 0, 0), rot=None, cylinder_radius=0.05)

Bases: ars.graphics.vtk_adapter.Entity , ars.graphics.base.Axes
class Body(*args, **kwargs)

Bases: ars.graphics.vtk_adapter.Entity

get_color()
Returns the color of the body. If it is an assembly, it is not checked whether all the objects’ colors are
equal.

set_color(color)
Sets the color of the body. If it is an assembly, all the objects’ color is set.

class Box(size, pos, rot=None)
Bases: ars.graphics.vtk_adapter.Body , ars.graphics.base.Box

class Capsule(length, radius, center, rot=None, resolution=20)
Bases: ars.graphics.vtk_adapter.Body , ars.graphics.base.Capsule

class Cone(height, radius, center, rot=None, resolution=20)
Bases: ars.graphics.vtk_adapter.Body , ars.graphics.base.Cone

class Cylinder(length, radius, center, rot=None, resolution=20)
Bases: ars.graphics.vtk_adapter.Body , ars.graphics.base.Cylinder

class Engine(title, pos=None, size=(1000, 600), zoom=1.0, cam_position=(10, 8, 10), back-
ground_color=(0.1, 0.1, 0.4), **kwargs)

Bases: ars.graphics.base.Engine

Graphics adapter to the Visualization Toolkit (VTK) library

add_object(obj)

2.5. ars 15

ARS, Release 0.5b1

finalize_window()
Finalize and delete renderer, render_window and interactor.

See also:

http://stackoverflow.com/questions/15639762/ and http://docs.python.org/2/reference/datamodel.html#object.__del__

remove_object(obj)

reset()

restart_window()

start_window(on_idle_callback=None, on_reset_callback=None, on_key_press_callback=None)

class Entity(*args, **kwargs)
Bases: object

adapter
alias of Engine

class ScreenshotRecorder(base_filename=’screenshot_’, graphics_adapter=None)
Bases: ars.graphics.base.ScreenshotRecorder

Based on an official example script, very simple: http://www.vtk.org/Wiki/VTK/Examples/Python/Screenshot

file_extension = ‘png’

write(index=1, time=None)

Note: Image files format is PNG, and extension is .png.

class Sphere(radius, center, rot=None, phi_resolution=20, theta_resolution=20)
Bases: ars.graphics.vtk_adapter.Body , ars.graphics.base.Sphere

VTK: sphere (represented by polygons) of specified radius centered at the origin. The resolution (polygonal
discretization) in both the latitude (phi) and longitude (theta) directions can be specified.

class Trimesh(vertices, faces, pos, rot=None)
Bases: ars.graphics.vtk_adapter.Body , ars.graphics.base.Trimesh

lib Package

lib Package External libs included in ARS

Subpackages

pydispatch Package

pydispatch Package Multi-consumer multi-producer dispatching mechanism

16 Chapter 2. Contents

http://stackoverflow.com/questions/15639762/
http://docs.python.org/2/reference/datamodel.html#object.__del__
http://www.vtk.org/Wiki/VTK/Examples/Python/Screenshot

ARS, Release 0.5b1

dispatcher Module Multiple-producer-multiple-consumer signal-dispatching

dispatcher is the core of the PyDispatcher system, providing the primary API and the core logic for the system.

Module attributes of note:

Any – Singleton used to signal either “Any Sender” or “Any Signal”. See documentation of the _Any
class.

Anonymous – Singleton used to signal “Anonymous Sender” See documentation of the _Anonymous
class.

Internal attributes:

WEAKREF_TYPES – tuple of types/classes which represent weak references to receivers, and thus must
be de- referenced on retrieval to retrieve the callable object

connections – { senderkey (id) : { signal : [receivers...]}}

senders – { senderkey (id) [weakref(sender) }] used for cleaning up sender references on sender deletion

sendersBack – { receiverkey (id) [[senderkey (id)...] }] used for cleaning up receiver references on receiver
deletion, (considerably speeds up the cleanup process vs. the original code.)

connect(receiver, signal=_Any, sender=_Any, weak=True)
Connect receiver to sender for signal

receiver – a callable Python object which is to receive messages/signals/events. Receivers must be hashable
objects.

if weak is True, then receiver must be weak-referencable (more precisely saferef.safeRef() must be able to
create a reference to the receiver).

Receivers are fairly flexible in their specification, as the machinery in the robustApply module takes care
of most of the details regarding figuring out appropriate subsets of the sent arguments to apply to a given
receiver.

Note: if receiver is itself a weak reference (a callable), it will be de-referenced by the system’s machinery,
so generally weak references are not suitable as receivers, though some use might be found for the
facility whereby a higher-level library passes in pre-weakrefed receiver references.

signal – the signal to which the receiver should respond

if Any, receiver will receive any signal from the indicated sender (which might also be Any, but is
not necessarily Any).

Otherwise must be a hashable Python object other than None (DispatcherError raised on None).

sender – the sender to which the receiver should respond

if Any, receiver will receive the indicated signals from any sender.

if Anonymous, receiver will only receive indicated signals from send/sendExact which do not specify
a sender, or specify Anonymous explicitly as the sender.

Otherwise can be any python object.

weak – whether to use weak references to the receiver By default, the module will attempt to use weak ref-
erences to the receiver objects. If this parameter is false, then strong references will be used.

returns None, may raise DispatcherTypeError

disconnect(receiver, signal=_Any, sender=_Any, weak=True)
Disconnect receiver from sender for signal

2.5. ars 17

ARS, Release 0.5b1

receiver – the registered receiver to disconnect signal – the registered signal to disconnect sender – the registered
sender to disconnect weak – the weakref state to disconnect

disconnect reverses the process of connect, the semantics for the individual elements are logically equivalent
to a tuple of (receiver, signal, sender, weak) used as a key to be deleted from the internal routing tables. (The
actual process is slightly more complex but the semantics are basically the same).

Note: Using disconnect is not required to cleanup routing when an object is deleted, the framework will remove
routes for deleted objects automatically. It’s only necessary to disconnect if you want to stop routing to a
live object.

returns None, may raise DispatcherTypeError or DispatcherKeyError

getAllReceivers(sender=_Any, signal=_Any)
Get list of all receivers from global tables

This gets all receivers which should receive the given signal from sender, each receiver should be produced only
once by the resulting generator

getReceivers(sender=_Any, signal=_Any)
Get list of receivers from global tables

This utility function allows you to retrieve the raw list of receivers from the connections table for the given
sender and signal pair.

Note: there is no guarantee that this is the actual list stored in the connections table, so the value should be
treated as a simple iterable/truth value rather than, for instance a list to which you might append new
records.

Normally you would use liveReceivers(getReceivers(...)) to retrieve the actual receiver objects as an iterable
object.

liveReceivers(receivers)
Filter sequence of receivers to get resolved, live receivers

This is a generator which will iterate over the passed sequence, checking for weak references and resolving
them, then returning all live receivers.

send(signal=_Any, sender=_Anonymous, *arguments, **named)
Send signal from sender to all connected receivers.

signal – (hashable) signal value, see connect for details

sender – the sender of the signal

if Any, only receivers registered for Any will receive the message.

if Anonymous, only receivers registered to receive messages from Anonymous or Any will receive
the message

Otherwise can be any python object (normally one registered with a connect if you actually want
something to occur).

arguments – positional arguments which will be passed to all receivers. Note that this may raise TypeErrors
if the receivers do not allow the particular arguments. Note also that arguments are applied before named
arguments, so they should be used with care.

named – named arguments which will be filtered according to the parameters of the receivers to only pro-
vide those acceptable to the receiver.

Return a list of tuple pairs [(receiver, response), ...]

18 Chapter 2. Contents

ARS, Release 0.5b1

if any receiver raises an error, the error propagates back through send, terminating the dispatch loop, so it is
quite possible to not have all receivers called if a raises an error.

sendExact(signal=_Any, sender=_Anonymous, *arguments, **named)
Send signal only to those receivers registered for exact message

sendExact allows for avoiding Any/Anonymous registered handlers, sending only to those receivers explicitly
registered for a particular signal on a particular sender.

errors Module Error types for dispatcher mechanism

exception DispatcherError
Bases: exceptions.Exception

Base class for all Dispatcher errors

exception DispatcherKeyError
Bases: exceptions.KeyError, ars.lib.pydispatch.errors.DispatcherError

Error raised when unknown (sender,signal) set specified

exception DispatcherTypeError
Bases: exceptions.TypeError, ars.lib.pydispatch.errors.DispatcherError

Error raised when inappropriate signal-type specified (None)

robust Module Module implementing error-catching version of send (sendRobust)

sendRobust(signal=_Any, sender=_Anonymous, *arguments, **named)
Send signal from sender to all connected receivers catching errors

signal – (hashable) signal value, see connect for details

sender – the sender of the signal

if Any, only receivers registered for Any will receive the message.

if Anonymous, only receivers registered to receive messages from Anonymous or Any will receive
the message

Otherwise can be any python object (normally one registered with a connect if you actually want
something to occur).

arguments – positional arguments which will be passed to all receivers. Note that this may raise TypeErrors
if the receivers do not allow the particular arguments. Note also that arguments are applied before named
arguments, so they should be used with care.

named – named arguments which will be filtered according to the parameters of the receivers to only pro-
vide those acceptable to the receiver.

Return a list of tuple pairs [(receiver, response), ...]

if any receiver raises an error (specifically any subclass of Exception), the error instance is returned as the result
for that receiver.

robustapply Module Robust apply mechanism

Provides a function “call”, which can sort out what arguments a given callable object can take, and subset the given
arguments to match only those which are acceptable.

2.5. ars 19

ARS, Release 0.5b1

function(receiver)
Get function-like callable object for given receiver

returns (function_or_method, codeObject, fromMethod)

If fromMethod is true, then the callable already has its first argument bound

robustApply(receiver, *arguments, **named)
Call receiver with arguments and an appropriate subset of named

saferef Module Refactored “safe reference” from dispatcher.py

class BoundMethodWeakref(target, onDelete=None)
Bases: object

‘Safe’ and reusable weak references to instance methods

BoundMethodWeakref objects provide a mechanism for referencing a bound method without requiring that the
method object itself (which is normally a transient object) is kept alive. Instead, the BoundMethodWeakref
object keeps weak references to both the object and the function which together define the instance method.

Attributes:

key – the identity key for the reference, calculated by the class’s calculateKey method applied to the
target instance method

deletionMethods – sequence of callable objects taking single argument, a reference to this object
which will be called when either the target object or target function is garbage collected (i.e. when
this object becomes invalid). These are specified as the onDelete parameters of safeRef calls.

weakSelf – weak reference to the target object

weakFunc – weak reference to the target function

Class Attributes:

_allInstances – class attribute pointing to all live BoundMethodWeakref objects indexed by the class’s
calculateKey(target) method applied to the target objects. This weak value dictionary is used to short-
circuit creation so that multiple references to the same (object, function) pair produce the same Bound-
MethodWeakref instance.

Return a weak-reference-like instance for a bound method

target – the instance-method target for the weak reference, must have <im_self> and <im_func> attributes
and be reconstructable via:

target.<im_func>.__get__(target.<im_self>)

which is true of built-in instance methods.

onDelete – optional callback which will be called when this weak reference ceases to be valid (i.e. either the
object or the function is garbage collected). Should take a single argument, which will be passed a pointer
to this object.

classmethod calculateKey(target)
Calculate the reference key for this reference

Currently this is a two-tuple of the id()’s of the target object and the target function respectively.

safeRef(target, onDelete=None)
Return a safe weak reference to a callable target

target – the object to be weakly referenced, if it’s a bound method reference, will create a BoundMethod-
Weakref, otherwise creates a simple weakref.

20 Chapter 2. Contents

ARS, Release 0.5b1

onDelete – if provided, will have a hard reference stored to the callable to be called after the safe reference
goes out of scope with the reference object, (either a weakref or a BoundMethodWeakref) as argument.

model Package

Subpackages

collision Package

base Module This module defines the basic functionality for collision, as well as the base classes that compose an
abstract interface to the library developers choose to use.

Both Space and Geom (parent class of Ray , Trimesh, Box, Sphere, Plane, etc) wrap the corresponding “na-
tive” object that the adapted library uses, assigned to private attribute _inner_object. To access (not set) it, these
classes have public property inner_object.

This module also contains the auxiliary classes RayContactData and NearCallbackArgs.

The following are common abbreviations present both in code and documentation:

• geom: geometry object

• trimesh: triangular mesh

class BasicShape
Bases: ars.model.collision.base.Geom

Abstract class from whom every solid object’s shape derive

class Box(space, size)
Bases: ars.model.collision.base.BasicShape

Box shape, aligned along the X, Y and Z axii by default

class Capsule(space, length, radius)
Bases: ars.model.collision.base.BasicShape

Capsule shape, aligned along the Z-axis by default

class Cone
Bases: ars.model.collision.base.BasicShape

class ConstantHeightfieldTrimesh(space, size_x, size_z, height)
Bases: ars.model.collision.base.HeightfieldTrimesh

A trimesh that is a heightfield at constant level.

Note: More than anything, this geom is for demonstration purposes, because it could be easily replaced with a
Plane.

Constructor.

Parameters

• space (Space) –

• size_x (positive int) – number of cells along the X axis

• size_z (positive int) – number of cells along the Z axis

2.5. ars 21

ARS, Release 0.5b1

• height (float) –

static calc_vertices(size_x, size_z, height=0.0)
Return the vertices of a horizontal grid of size_x by size_z cells at a certain height.

Parameters

• size_x (positive int) – number of cells along the X axis

• size_z (positive int) – number of cells along the Z axis

• height (float) –

>>> ConstantHeightfieldTrimesh.calc_vertices(2, 4)
[(0, 0.0, 0), (0, 0.0, 1), (0, 0.0, 2), ..., (1, 0.0, 3)]

class ContactGroup
Bases: object

Wrapper around a collection-like class storing contact data instances.

What these instances are (attributes, behavior) is up to the implementation of the adpater.

empty()
Remove all the stored contact data instances.

inner_object

class Cylinder(space, length, radius)
Bases: ars.model.collision.base.BasicShape

Cylinder shape, aligned along the Z-axis by default

class Engine
Bases: object

Collision engine abstract base class.

classmethod are_geoms_connected(geom1, geom2)
Return whether geom1‘s body is connected to geom2‘s body.

The connection is checked as whether geoms bodies are connected through a joint or not.

Parameters

• geom1 (type of Geom.inner_object) –

• geom2 (type of Geom.inner_object) –

Returns True if geoms’ bodies are connected; False otherwise

Return type bool

classmethod calc_collision(geom1, geom2)
Calculate information of the collision between these geoms.

Check if geom1 and geom2 actually collide and create a list of contact data objects if they do.

Parameters

• geom1 (type of Geom.inner_object) –

• geom2 (type of Geom.inner_object) –

Returns contacts information

Return type list of contact data objects

22 Chapter 2. Contents

ARS, Release 0.5b1

classmethod is_ray(geom)
Return whether geom is a ray-like object or not.

Parameters geom (type of Geom.inner_object) –

Returns True if geom is an instance of the class representing a ray in the adapted library

Return type bool

classmethod near_callback(args, geom1, geom2)
Handle possible collision between geom1 and geom2.

The responsible for determining if there is an actual collision is calc_collision(), which will return
a list of contact data objects.

That information is passed to either process_collision_contacts() or
process_ray_collision_contacts(), depending on whether geom1 or geom2 is a ray
or not. It’s an unhandled case that both geoms were rays.

This function is usually the callback function for Space.collide(), although it will probably be
handed over to the inner object of a Space subclass.

Parameters

• args (NearCallbackArgs) – data structure wrapping the objects necessary to process
the collision

• geom1 (type of Geom.inner_object) –

• geom2 (type of Geom.inner_object) –

classmethod process_collision_contacts(args, geom1, geom2, contacts)
Process contacts of a collision between geom1 and geom2.

This method should create movement constraints for the bodies attached to the geoms. This is necessary
for the simulation to prevent bodies’ volumes from penetrating each other, making them really collide (i.e.
exert mutually opposing forces).

Warning: Neither geom1 nor geom2 can be rays. If one of them is, use method
process_ray_collision_contacts().

Parameters

• args (NearCallbackArgs) –

• geom1 (type of Geom.inner_object) –

• geom2 (type of Geom.inner_object) –

• contacts (list of contact data objects) – collision data returned by
calc_collision()

classmethod process_ray_collision_contacts(ray, other_geom, contacts)
Process special case of collision between a ray and a regular geom.

See also:

For regular geoms collision, see process_collision_contacts().

Since rays have no attached body, they can’t “really” collide with other geoms. However, they do intersect,
which is of interest to non-physical aspects of the simulation. A common use case is that of laser distance
sensors.

Warning: Collision between two rays is a singularity and should never happen.

2.5. ars 23

ARS, Release 0.5b1

Parameters

• ray (type of Ray.inner_object) –

• other_geom (type of Geom.inner_object) –

• contacts (list of contact data objects) – collision data returned by
calc_collision()

class Geom
Bases: object

Geometry object encapsulation.

This class wraps the corresponding “native” object the adapted-to library (e.g. ODE) uses, assigned to
_inner_object.

Subclasses must implement these methods:

•__init__()

•attach_body()

•get_position(), set_position()

•get_rotation(), set_rotation()

attach_body(body)

get_attached_body()

get_position()
Get the position of the geom.

Returns position

Return type 3-sequence of floats

get_rotation()
Get the orientation of the geom.

Returns rotation matrix

Return type 9-sequence of floats

inner_object

set_position(pos)
Set the position of the geom.

Parameters pos (3-sequence of floats) – position

set_rotation(rot)
Set the orientation of the geom.

Parameters rot (9-sequence of floats) – rotation matrix

class HeightfieldTrimesh(space, size_x, size_z, vertices)
Bases: ars.model.collision.base.Trimesh

static calc_faces(size_x, size_z)
Return the faces for a horizontal grid of size_x by size_z cells.

Faces are triangular, so each is composed by 3 vertices. Consequently, each returned face is a length-3
sequence of the vertex indices.

Parameters

24 Chapter 2. Contents

ARS, Release 0.5b1

• size_x (positive int) – number of cells along the X axis

• size_z (positive int) – number of cells along the Z axis

Returns faces for a heightfield trimesh based in a horizontal grid of size_x by size_z cells

Return type list of 3-tuple of ints

>>> HeightfieldTrimesh.calc_faces(2, 4)
[(0, 1, 4), (1, 5, 4), (1, 6, 5), (1, 2, 6), (2, 3, 6), (3, 7, 6)]

class NearCallbackArgs(world=None, contact_group=None, ignore_connected=True)
Bases: object

Data structure to save the args passed to Engine.near_callback().

All attributes are read-only (set at initialization).

Constructor.

Parameters

• world (physics.base.World) –

• contact_group (ContactGroup) –

• ignore_connected (bool) – whether to ignore collisions of geoms whose bodies are
connected, or not

contact_group

ignore_connected

world

class Plane(space, normal, dist)
Bases: ars.model.collision.base.BasicShape

Plane, different from a box

class Ray(space, length)
Bases: ars.model.collision.base.Geom

Ray aligned along the Z-axis by default. “A ray is different from all the other geom classes in that it does
not represent a solid object. It is an infinitely thin line that starts from the geom’s position and extends in the
direction of the geom’s local Z-axis.” (ODE Wiki Manual)

clear_closer_contact()

clear_contacts()

clear_last_contact()

get_closer_contact()
Return the contact object corresponding to the collision closest to the ray’s origin.

It may or may not be the same object returned by get_last_contact.

get_last_contact()
Return the contact object corresponding to the last collision of the ray with another geom. Note than in
each simulation step, several collisions may occur, one for each intersection geom (in ODE). The object
returned may or may not be the same returned by get_closer_contact.

get_length()

2.5. ars 25

ARS, Release 0.5b1

set_last_contact(last_contact)
Set the contact data of ray’s last collision. It also checks if last_contact is closer than the previously
existing one. The result can be obtained with the get_closer_contact method.

set_length(length)

class RayContactData(ray=None, shape=None, pos=None, normal=None, depth=None)
Bases: object

Data structure to save the contact information of a collision between ray and shape.

All attributes are read-only (set at initialization).

Constructor.

Parameters

• ray (the type of Ray subclass’ inner_object) –

• shape (the type of Geom subclass’ inner_object) –

• pos (3-tuple of floats) – point at which the ray intersects the surface of the other
shape/geom

• normal (3-tuple of floats) – vector normal to the surface of the other geom at the
contact point

• depth (float) – distance from the origin of the ray to the contact point

depth

normal

position

ray

shape

class Space
Bases: object

Collision space abstract base class.

This class wraps the corresponding “native” object the adapted-to library (e.g. ODE) uses, assigned to
_inner_object.

Subclasses must implement these methods:

•__init__()

•collide()

collide(args, callback)

inner_object

class Sphere(space, radius)
Bases: ars.model.collision.base.BasicShape

Spherical shape

class Trimesh(space, vertices, faces)
Bases: ars.model.collision.base.Geom

A triangular mesh i.e. a surface composed of triangular faces.

26 Chapter 2. Contents

ARS, Release 0.5b1

Note: Note that a trimesh need not be closed. For example, it could be used to model the ground surface.

Its geometry is defined by two attributes: vertices and faces, both list of 3-tuple numbers. However,
each tuple in vertices designates a 3D point in space whereas each tuple in faces is a group of indices
referencing points in vertices.

Warning: The order of vertices indices for each face does matter.

Example:

vertices = [(0, 0.0, 0), (0, 0.0, 1), (0, 0.0, 2), (0, 0.0, 3),
(1, 0.0, 0), (1, 0.0, 1), (1, 0.0, 2), (1, 0.0, 3)]

faces = [(0, 1, 4), (1, 5, 4), (1, 6, 5),
(1, 2, 6), (2, 3, 6), (3, 7, 6)]

The, the first face is defined by points: (0, 0.0, 0), (0, 0.0, 1), (1, 0.0, 0). With that order,
the normal to the face is (0, 1.0, 0) i.e. the Y axis. The rationale to determining the inwards and outwards
directions follows the well-known “right hand rule”.

static swap_faces_indices(faces)
Faces had to change their indices to work with ODE. With the initial get_faces, the normal to the triangle
defined by the 3 vertices pointed (following the right-hand rule) downwards. Swapping the third with the
first index, now the triangle normal pointed upwards.

ode_adapter Module Classes and functions to interface with the collision library included in ODE.

class BasicShape
Bases: ars.model.collision.ode_adapter.Geom

class Box(space, size)
Bases: ars.model.collision.ode_adapter.BasicShape, ars.model.collision.base.Box

Box shape, aligned along the X, Y and Z axii by default

class Capsule(space, length, radius)
Bases: ars.model.collision.ode_adapter.BasicShape, ars.model.collision.base.Capsule

Capsule shape, aligned along the Z-axis by default

class ContactGroup
Bases: ars.model.collision.base.ContactGroup

empty()

class Cylinder(space, length, radius)
Bases: ars.model.collision.ode_adapter.BasicShape, ars.model.collision.base.Cylinder

Cylinder shape, aligned along the Z-axis by default

class Engine
Bases: ars.model.collision.base.Engine

Adapter to the ODE collision engine.

classmethod are_geoms_connected(geom1, geom2)
(see parent method)

Parameters

2.5. ars 27

ARS, Release 0.5b1

• geom1 (ode.GeomObject) –

• geom2 (ode.GeomObject) –

classmethod calc_collision(geom1, geom2)
Calculate information of the collision between these geoms.

Check if geom1 and geom2 actually collide and create a list of contact data objects if they do.

Parameters

• geom1 (ode.GeomObject) –

• geom2 (ode.GeomObject) –

Returns contacts information

Return type list of ode.Contact

classmethod is_ray(geom)
Return whether geom is a ode.GeomRay object or not.

Parameters geom (ode.GeomObject) –

Returns True if geom is an instance of ode.GeomRay

Return type bool

classmethod process_collision_contacts(args, geom1, geom2, contacts)
(see parent base.Engine.process_collision_contacts())

Parameters

• geom1 (ode.GeomObject) –

• geom2 (ode.GeomObject) –

• contacts (list of ode.Contact) –

classmethod process_ray_collision_contacts(ray, other_geom, contacts)
(see parent base.Engine.process_ray_collision_contacts())

Parameters

• ray (ode.GeomRay) – monkey-patched object whose attribute outer_object refer-
ences its wrapper (a base.Ray object)

• other_geom (ode.GeomObject) –

• contacts (list of ode.Contact) –

class Geom
Bases: ars.model.collision.base.Geom

Abstract class, sort of equivalent to ode.GeomObject.

attach_body(body)

get_position()
Get the position of the geom.

Returns position

Return type 3-sequence of floats

get_rotation()
Get the orientation of the geom.

Returns rotation matrix

28 Chapter 2. Contents

ARS, Release 0.5b1

Return type 9-sequence of floats

set_position(pos)
Set the position of the geom.

Parameters pos (3-sequence of floats) – position

set_rotation(rot)
Set the orientation of the geom.

Parameters rot (9-sequence of floats) – rotation matrix

class Plane(space, normal, dist)
Bases: ars.model.collision.ode_adapter.BasicShape, ars.model.collision.base.Plane

Plane, different from a box

class Ray(space, length)
Bases: ars.model.collision.ode_adapter.Geom, ars.model.collision.base.Ray

get_length()

set_length(length)

class Space
Bases: ars.model.collision.base.Space

Adapter to ode.SimpleSpace.

collide(args, callback=None)
Call callback with args for all potentially intersecting geom pairs.

Function callback must accept 3 arguments: args, geom1, geom2.

Parameters

• args (NearCallbackArgs) – data object passed to callback in each call

• callback (function or None) – a function with signature args, geom1,
geom2

class Sphere(space, radius)
Bases: ars.model.collision.ode_adapter.BasicShape, ars.model.collision.base.Sphere

Spherical shape

class Trimesh(space, vertices, faces)
Bases: ars.model.collision.ode_adapter.Geom, ars.model.collision.base.Trimesh

ode_objects_factories Module ODE objects factories i.e. functions that create ODE objects.

create_ode_box(space, size)
Create an ODE box geom.

Parameters

• space (ode.Space) –

• size (3-sequence of floats) –

Returns ODE box geom

Return type ode.GeomBox

2.5. ars 29

ARS, Release 0.5b1

create_ode_capsule(space, length, radius)
Create an ODE capsule geom.

Note: In GeomCCylinder (same as GeomCapsule) CCylinder means Capped Cylinder.

Warning: ODE’s constructor parameter order is different: radius first and then length.

Parameters

• space (ode.Space) –

• length (float) – of the cylindrical section i.e. caps are not included

• radius (float) –

Returns ODE capsule geom

Return type ode.GeomCCylinder

create_ode_cylinder(space, length, radius)
Create an ODE cylinder geom.

Warning: ODE’s constructor parameter order is different: radius first and then length.

Parameters

• space (ode.Space) –

• length (float) –

• radius (float) –

Returns ODE cylinder geom

Return type ode.GeomCylinder

create_ode_hash_space()
Create a more sophisticated ODE geoms container (i.e. “space”).

Note: ode.HashSpace() equals ode.Space(space_type=1).

Returns ODE hash space

Return type ode.HashSpace

create_ode_joint_group()
Create an ODE joint group.

Returns ODE joint group

Return type ode.JointGroup

create_ode_plane(space, normal, dist)
Create an ODE plane (infinite) geom.

The plane equation is

𝑛0 · 𝑥+ 𝑛1 · 𝑦 + 𝑛2 · 𝑧 = 𝑑𝑖𝑠𝑡

where normal = (n0, n1, n2).

30 Chapter 2. Contents

ARS, Release 0.5b1

Warning: This object can’t be attached to a body.

Parameters

• space (ode.Space) –

• normal (3-sequence of floats) – vector normal to the plane

• dist (float) – constant of the plane equation

Returns ODE plane geom

Return type ode.GeomPlane

create_ode_ray(space, length)
Create an ODE ray geom.

Parameters

• space (ode.Space) –

• length (float) –

Returns ODE ray geom

Return type ode.GeomRay

create_ode_simple_space()
Create an ODE geoms container (i.e. “space”) of the simplest type.

Note: ode.SimpleSpace() equals ode.Space(space_type=0).

Returns ODE simple space

Return type ode.SimpleSpace

create_ode_sphere(space, radius)
Create an ODE sphere geom.

Parameters

• space (ode.Space) –

• radius (float) –

Returns ODE sphere geom

Return type ode.GeomSphere

create_ode_trimesh(space, vertices, faces)
Create an ODE trimesh geom.

Parameters

• space (ode.Space) –

• vertices (sequence of 3-sequences of floats) –

• faces (sequence of 3-sequences of ints) –

Returns ODE trimesh geom

Return type ode.GeomTriMesh

2.5. ars 31

ARS, Release 0.5b1

signals Module This module contains string values defining different signals related to the
ars.model.collision package.

contrib Package

contrib Package Container for contributed modules or packages that could be helpful for other ARS users (other
than its own developers, which are encouraged to improve their contributions and spread the word about them).

Later on, the most popular and stable parts of the code should be integrated in the official package.

geometry Package

geometry Package

physics Package

base Module
class Body(mass=None, density=None, pos=None, rot=None, *args, **kwargs)

Bases: object

attach_geom(geom)

calc_potential_energy(gravity)
Calculate the potential energy of the body due to its position (x) and the gravitational acceleration (g).

𝐸𝑝 = 𝑚 · 𝑔 · ℎ = −𝑚 · 𝑔⊤𝑥

Parameters gravity (tuple of 3 floats) – gravitational acceleration vector

Returns potential energy

Return type float

calc_rotation_kinetic_energy()
Calculate the kinetic energy of the body due to rotational movement.

𝐸𝑘𝑟 =
1

2
𝐼𝜔2 =

1

2
𝜔⊤I𝜔

Returns kinetic energy

Return type float

calc_translation_kinetic_energy()
Calculate the kinetic energy of the body due to translational movement.

𝐸𝑘𝑡 =
1

2
𝑚𝑣2 =

1

2
𝑚 · 𝑣⊤𝑣

Returns kinetic energy

Return type float

get_angular_velocity()

get_attached_geom()

get_center_of_gravity()

32 Chapter 2. Contents

ARS, Release 0.5b1

get_inertia_tensor()

get_linear_velocity()

get_mass()

get_position()
Get the position of the body.

Returns position

Return type 3-sequence of floats

get_rotation()
Get the orientation of the body.

Returns rotation matrix

Return type 9-sequence of floats

get_saved_velocities()
Return last saved velocities (linear and angular).

inner_object

save_velocities()
Retrieve the actual velocities (linear and angular) of the body and save them.

set_position(pos)
Set the position of the body.

Sends signals.BODY_PRE_SET_POSITION and signals.BODY_POST_SET_POSITION.

Parameters pos (3-sequence of floats) – position

set_rotation(rot)
Set the orientation of the body.

Sends signals.BODY_PRE_SET_ROTATION and signals.BODY_POST_SET_ROTATION.

Parameters rot (9-sequence of floats) – rotation matrix
class Box(size, *args, **kwargs)

Bases: ars.model.physics.base.Body

size

class Capsule(length, radius, *args, **kwargs)
Bases: ars.model.physics.base.Body

length

radius

class Cone(height, radius, *args, **kwargs)
Bases: ars.model.physics.base.Body

height

radius

class Cylinder(length, radius, *args, **kwargs)
Bases: ars.model.physics.base.Body

length

radius

2.5. ars 33

ARS, Release 0.5b1

class Engine
Bases: object

world_class = None

class Sphere(radius, *args, **kwargs)
Bases: ars.model.physics.base.Body

radius

class World(gravity, *args, **kwargs)
Bases: object

gravity

inner_object

step(time_step)
Subclasses implementing this method must send the corresponding signals, defined in
ars.model.physics.signals.

ode_adapter Module Classes and functions to interface the ODE physics engine with the API defined in
physics.

class Body(world, space, mass=None, density=None, *args, **kwargs)
Bases: object

Abstract class, sort of equivalent to ode.Body.

Constructor.

Parameters

• world (base.World) –

• space (collision.base.Space) –

• mass (float or None) –

• density (float or None) –

get_angular_velocity()

get_center_of_gravity()

get_inertia_tensor()

get_linear_velocity()

get_mass()

get_position()
Get the position of the body.

Returns position

Return type 3-sequence of floats

get_rotation()
Get the orientation of the body.

Returns rotation matrix

Return type 9-sequence of floats

34 Chapter 2. Contents

ARS, Release 0.5b1

set_position(pos)
Set the position of the body.

Sends signals.BODY_PRE_SET_POSITION and signals.BODY_POST_SET_POSITION.

Parameters pos (3-sequence of floats) – position

set_rotation(rot)
Set the orientation of the body.

Sends signals.BODY_PRE_SET_ROTATION and signals.BODY_POST_SET_ROTATION.

Parameters rot (9-sequence of floats) – rotation matrix

class Box(world, space, size, mass=None, density=None)
Bases: ars.model.physics.ode_adapter.Body , ars.model.physics.base.Box

class Capsule(world, space, length, radius, mass=None, density=None)
Bases: ars.model.physics.ode_adapter.Body , ars.model.physics.base.Capsule

create capsule body (aligned along the z-axis so that it matches the Geom created below, which is aligned along
the Z-axis by default)

class Cylinder(world, space, length, radius, mass=None, density=None)
Bases: ars.model.physics.ode_adapter.Body , ars.model.physics.base.Cylinder

create cylinder body (aligned along the z-axis so that it matches the Geom created below, which is aligned along
the Z-axis by default)

class Engine
Bases: ars.model.physics.base.Engine

Adapter to the ODE physics engine

world_class
alias of World

class Sphere(world, space, radius, mass=None, density=None)
Bases: ars.model.physics.ode_adapter.Body , ars.model.physics.base.Sphere

class World(gravity=(0.0, -9.81, 0.0), ERP=0.2, CFM=1e-10, *args, **kwargs)
Bases: ars.model.physics.base.World

Adapter to ode.World.

See also:

Read abouth ERP and CFM in ODE’s wiki http://ode-wiki.org/wiki/index.php?title=Manual:_Concepts

Constructor.

Parameters

• gravity (3-sequence of floats) – gravity acceleration vector

• ERP (float) – Error Reduction Parameter

• CFM (float) – Constraint Force Mixing

gravity

step(time_step)

2.5. ars 35

http://ode-wiki.org/wiki/index.php?title=Manual:_Concepts

ARS, Release 0.5b1

ode_objects_factories Module ODE objects factories i.e. functions that create ODE objects.

create_ode_box(world, size, mass=None, density=None)
Create an ODE body with box-like mass parameters.

Parameters

• world (ode.World) –

• size (3-sequence of floats) –

• mass (float or None) –

• density (float or None) –

Returns box body

Return type ode.Body

create_ode_capsule(world, length, radius, mass=None, density=None)
Create an ODE body with capsule-like mass parameters.

Parameters

• world (ode.World) –

• length (float) –

• radius (float) –

• mass (float or None) –

• density (float or None) –

Returns capsule body

Return type ode.Body

create_ode_cylinder(world, length, radius, mass=None, density=None)
Create an ODE body with cylinder-like mass parameters.

Parameters

• world (ode.World) –

• length (float) –

• radius (float) –

• mass (float or None) –

• density (float or None) –

Returns cylinder body

Return type ode.Body

create_ode_sphere(world, radius, mass=None, density=None)
Create an ODE body with sphere-like mass parameters.

Parameters

• world (ode.World) –

• radius (float) –

• mass (float or None) –

• density (float or None) –

36 Chapter 2. Contents

ARS, Release 0.5b1

Returns sphere body

Return type ode.Body

create_ode_world(gravity=(0.0, -9.81, 0.0), ERP=0.8, CFM=1e-10)
Create an ODE world object.

Parameters

• gravity (3-sequence of floats) – gravity acceleration vector

• ERP (float) – Error Reduction Parameter

• CFM (float) – Constraint Force Mixing

Returns world

Return type ode.World

signals Module This module contains string values defining different signals related to the
ars.model.physics package.

robot Package

joints Module Module of all the classes related to physical joints. These are objects that link 2 bodies together.

There are two base abstract classes for all joints: Joint and ActuatedJoint. They are not coupled (at all) with
ODE or any other physics or collision library/engine.

The classes that implement at least one of those interfaces are these:

• Fixed

• Rotary

• Universal

• BallSocket

• Slider

There is also an auxiliary class: JointFeedback.

class ActuatedJoint(world, inner_joint, body1=None, body2=None)
Bases: ars.model.robot.joints.Joint

A joint with an actuator that can exert force and/or torque to connected bodies.

This is an abstract class.

Constructor.

Parameters

• world (physics.base.World) –

• inner_joint (ode.Joint) –

• body1 (physics.base.Body) –

• body2 (physics.base.Body) –

class BallSocket(world, body1, body2, anchor)
Bases: ars.model.robot.joints.Joint

Constructor.

2.5. ars 37

ARS, Release 0.5b1

Parameters

• world (physics.base.World) –

• body1 (physics.base.Body) –

• body2 (physics.base.Body) –

• anchor (3-tuple of floats) – joint anchor point

class Fixed(world, body1, body2)
Bases: ars.model.robot.joints.Joint

Constructor.

Parameters

• world (physics.base.World) –

• body1 (physics.base.Body) –

• body2 (physics.base.Body) –

class Joint(world, inner_joint, body1=None, body2=None)
Bases: object

Entity that links 2 bodies together, enforcing one or more movement constraints.

This is an abstract class.

Constructor.

Parameters

• world (physics.base.World) –

• inner_joint (ode.Joint) –

• body1 (physics.base.Body) –

• body2 (physics.base.Body) –

body1

body2

class JointFeedback(body1, body2, force1=None, force2=None, torque1=None, torque2=None)
Bases: object

Data structure to hold the forces and torques resulting from the interaction of 2 bodies through a joint.

All attributes are private. The results (force1, force2, torque1, torque2) are all length-3 tuples of
floats.

Constructor.

Parameters

• body1 (physics.base.Body) –

• body2 (physics.base.Body) –

• force1 (3-tuple of floats) –

• force2 (3-tuple of floats) –

• torque1 (3-tuple of floats) –

• torque2 (3-tuple of floats) –

38 Chapter 2. Contents

ARS, Release 0.5b1

body1

body2

force1

force2

torque1

torque2

class Rotary(world, body1, body2, anchor, axis)
Bases: ars.model.robot.joints.ActuatedJoint

Constructor.

Parameters

• world (physics.base.World) –

• body1 (physics.base.Body) –

• body2 (physics.base.Body) –

• anchor (3-tuple of floats) – joint anchor point

• axis (3-tuple of floats) – rotation axis

add_torque(torque)
Apply torque about the rotation axis.

Parameters torque (float) – magnitude

angle
Return the angle between the two bodies.

The zero angle is determined by the position of the bodies when joint’s anchor was set.

Returns value ranging -pi and +pi

Return type float

angle_rate
Return the rate of change of the angle between the two bodies.

Returns angle rate

Return type float

set_speed(speed, max_force=None)
Set rotation speed to speed.

The joint will set that speed by applying a force up to max_force, so it is not guaranteed that speed
will be reached.

Parameters

• speed (float) – speed to set

• max_force (float or None) – if not None, the maximum force the joint can apply
when trying to set the rotation speed

class Slider(world, body1, body2, axis)
Bases: ars.model.robot.joints.ActuatedJoint

Joint with one DOF that constrains two objects to line up along an axis.

It is different from a Piston joint (which has two DOF) in that the Slider does not allow rotation.

2.5. ars 39

ARS, Release 0.5b1

Constructor.

Parameters

• world (physics.base.World) –

• body1 (physics.base.Body) –

• body2 (physics.base.Body) –

• axis (3-tuple of floats) – rotation axis

add_force(force)
Apply a force of magnitude force along the joint’s axis.

position
Return position of the joint with respect to its initial position.

The zero position is established when the joint’s axis is set.

Return type float

position_rate
Return position’s time derivative, i.e. “speed”.

Return type float

class Universal(world, body1, body2, anchor, axis1, axis2)
Bases: ars.model.robot.joints.Joint

Constructor.

Parameters

• world (physics.base.World) –

• body1 (physics.base.Body) –

• body2 (physics.base.Body) –

• anchor (3-tuple of floats) – joint anchor point

• axis1 (3-tuple of floats) – first universal axis

• axis2 (3-tuple of floats) – second universal axis

sensors Module Module of all the classes related to sensors.

There are base classes for sensors whose source is a body, joint or simulation. It also considers those which read
information automatically by subscribing to certain signals.

Some abstract classes are:

• BaseSourceSensor

• BaseSignalSensor

• BodySensor

• JointSensor

• SimulationSensor

Some practical sensors are:

• RotaryJointSensor, JointTorque

40 Chapter 2. Contents

ARS, Release 0.5b1

• Laser

• GPS, Velometer, Accelerometer, Inclinometer

• KineticEnergy , PotentialEnergy , TotalEnergy , SystemTotalEnergy

It also contains the auxiliary classes SensorData and SensorDataQueue.

class Accelerometer(body, time_step)
Bases: ars.model.robot.sensors.BodySensor

Calculate and retrieve a body’s linear and angular acceleration.

Warning: The provided time_step is used to calculate the acceleration based on the velocity measured at
two instants in time. If subsequent calls to on_change are separated by a simulation time period different to
the given time_step, the results will be invalid.

class ActuatedJointSensor(joint)
Bases: ars.model.robot.sensors.JointSensor

Sensor whose source of data is an ActuatedJoint joint.

class BaseSignalSensor(sender=_Any, autotime=False)
Bases: object

Base class for sensors that handle signals with on_send().

Constructor.

Parameters

• sender – object that will send the signal; if it is any_sender, subscription will be to
any object

• autotime – if True and _get_time() is not overriden, every measurement’s time will
set to the computer time in that instant

any_sender = _Any

on_send(sender, *args, **kwargs)
Handle signal sent/fired by sender through the dispatcher.

Takes care of building a data object, set time to it and save it in the data_queue.

Parameters

• sender – signal sender

• args – signal arguments

• kwargs – signal keyword arguments

sender
Return the sender of the signal to which the sensor listens.

class BaseSourceSensor(source)
Bases: object

Abstract base class for all sensors.

Sensor data is stored in a queue (data_queue), and it is usually retrieved after the simulation ends but can be
accessed at any time:

measurement = sensor.data_queue.pull()

2.5. ars 41

ARS, Release 0.5b1

Warning: Beware that ars.utils.containers.Queue.pull() returns the first element of the
queue and removes it.

get_measurement()
Return a measurement of the sensor packed in a data structure.

on_change(time=None)
Build a SensorData object and stores it in the data_queue.

Parameters time (number or None) – if None, current (computer’s) time is used

source

class BodySensor(body)
Bases: ars.model.robot.sensors.BaseSourceSensor

Abstract base class for sensors whose source of data is a body.

body

class GPS(body)
Bases: ars.model.robot.sensors.BodySensor

Retrieve a body’s XYZ position.

class Inclinometer(body)
Bases: ars.model.robot.sensors.BodySensor

Retrieve a body’s pitch and roll.

class JointForce(sim_joint, sim)
Bases: ars.model.robot.sensors.SingleSignalSensor

Sensor measuring force ‘added’ to a joint.

signal = ‘robot joint post add force’

class JointPower(sim_joint, sim)
Bases: ars.model.robot.sensors.MultipleSignalsSensor

Sensor measuring power applied by a joint (due to force and torque).

signals = [’robot joint post add torque’, ‘robot joint post add force’]

class JointSensor(joint)
Bases: ars.model.robot.sensors.BaseSourceSensor

Abstract base class for sensors whose source of data is a joint.

joint

class JointTorque(sim_joint, sim)
Bases: ars.model.robot.sensors.SingleSignalSensor

Sensor measuring torque added to a joint.

signal = ‘robot joint post add torque’

class KineticEnergy(body)
Bases: ars.model.robot.sensors.BodySensor

42 Chapter 2. Contents

ARS, Release 0.5b1

Retrieve a body’s kinetic energy, both due to translation and rotation.

𝐸𝑡 =
1

2
𝑚𝑣2 =

1

2
𝑚 · 𝑣⊤𝑣

𝐸𝑟 =
1

2
𝐼𝜔2 =

1

2
𝜔⊤I𝜔

class Laser(space, max_distance=10.0)
Bases: ars.model.robot.sensors.BaseSourceSensor

Laser scanner.

get_ray()

on_change(time=1488286418.410617)

set_position(pos)
Set position of the ray.

Useful mainly when it is not attached to a body.

Parameters pos (3-sequence of floats) – position

set_rotation(rot)
Set rotation of the ray.

Useful mainly when it is not attached to a body.

Parameters rot (9-sequence of floats) – rotation matrix

class MultipleSignalsSensor(signals, *args, **kwargs)
Bases: ars.model.robot.sensors.BaseSignalSensor

Abstract base class for sensors subscribed to multiple signals.

Constructor.

Parameters signals (iterable) – signals to subscribe to

class PotentialEnergy(body, gravity)
Bases: ars.model.robot.sensors.BodySensor

Retrieve a body’s potential energy.

Calculated based on the current position (x) and world’s gravitational acceleration (g).

𝐸𝑝 = 𝑚 · 𝑔 · ℎ = −𝑚 · 𝑔⊤𝑥

class RotaryJointSensor(joint)
Bases: ars.model.robot.sensors.ActuatedJointSensor

Sensor measuring the angle (and its rate) of a rotary joint.

class SensorData(*args, **kwargs)
Bases: object

Data structure to pack a sensor measurement’s information.

get_arg(index)

get_args()

get_kwarg(key)

get_kwargs()

2.5. ars 43

ARS, Release 0.5b1

get_time()

set_time(time)

class SensorDataQueue
Bases: ars.utils.containers.Queue

Queue-like container for sensor measurements.

class SimulationSensor(sim)
Bases: ars.model.robot.sensors.BaseSourceSensor

Abstract base class for sensors whose source of data is a simulation.

Constructor.

Parameters sim (ars.model.simulator.Simulation) – simulation

sim
Return the simulation object.

Returns simulation

Return type ars.model.simulator.Simulation

class SingleSignalSensor(signal, *args, **kwargs)
Bases: ars.model.robot.sensors.BaseSignalSensor

Abstract base class for sensors subscribed to one signal.

Constructor.

Parameters signal – signal to subscribe to

class SystemTotalEnergy(sim, disaggregate=False)
Bases: ars.model.robot.sensors.SimulationSensor

Retrieve a system’s total potential and kinetic energy.

It considers all bodies in the simulation. The kinetic energy accounts for translation and rotation.

𝐸𝑝 = 𝑚 · 𝑔 · ℎ = −𝑚 · 𝑔⊤𝑥

𝐸𝑘 =
1

2
𝑚 · 𝑣⊤𝑣 + 1

2
𝜔⊤I𝜔

class TotalEnergy(body, gravity, disaggregate=False)
Bases: ars.model.robot.sensors.BodySensor

Retrieve a body’s potential and kinetic energy.

The kinetic energy accounts for translation and rotation.

𝐸𝑝 = 𝑚 · 𝑔 · ℎ = −𝑚 · 𝑔⊤𝑥

𝐸𝑘 =
1

2
𝑚 · 𝑣⊤𝑣 + 1

2
𝜔⊤I𝜔

class Velometer(body)
Bases: ars.model.robot.sensors.BodySensor

Calculate and retrieve a body’s linear and angular velocity.

signalsModule This module contains string values defining different signals related to the ars.model.robot
package.

44 Chapter 2. Contents

ARS, Release 0.5b1

simulator Package

simulator Package
class SimulatedBody(name, body=None, actor=None, geom=None)

Bases: ars.model.simulator.SimulatedPhysicsObject

Class encapsulating the physics, collision and graphical objects representing a body.

All the public attributes of the physics object (_body) are accessible as if they were from this class, by using a
trick with __getattr__. This avoids code duplication and frequent changes to the interface.

For example, the call sim_body.get_linear_velocity() works if method sim_body._body.get_linear_velocity ex-
ists.

There are some exceptions such as the getters and setters of position and rotation because the base class Simu-
latedPhysicsObject defines those abstract methods (some other non-abstract methods use them) and requires its
subclasses to implement them. Otherwise we get “TypeError: Can’t instantiate abstract class SimulatedBody
with abstract methods”.

body

get_position()
Get the position of the body.

Returns position

Return type 3-sequence of floats

get_rotation()
Get the orientation of the body.

Returns rotation matrix

Return type 9-sequence of floats

set_position(pos)
Set the orientation of the body.

Parameters pos (3-sequence of floats) – position

set_rotation(rot)
Set the orientation of the body.

Parameters rot (9-sequence of floats) – rotation matrix
class SimulatedJoint(name=None, joint=None, actor=None)

Bases: ars.model.simulator.SimulatedPhysicsObject

add_torque(torque)

get_position()

get_rotation()

joint

set_position(pos)

set_rotation(rot)

class SimulatedObject(name, actor=None)
Bases: object

actor

get_name()

2.5. ars 45

ARS, Release 0.5b1

has_actor()

is_updatable()

set_name(name)

class SimulatedPhysicsObject(name, actor=None)
Bases: ars.model.simulator.SimulatedObject

get_pose()
Get the pose (3D position and rotation) of the object.

Returns pose

Return type ars.utils.geometry.Transform

get_position()
Get the position of the object.

Returns position

Return type 3-sequence of floats

get_rotation()
Get the orientation of the object.

Returns rotation matrix

Return type 9-sequence of floats

offset_by_object(obj)

offset_by_position(offset_pos)

rotate(axis, angle)
Rotate the object by applying a rotation matrix defined by the given axis and angle

set_pose(pose)
Set the pose (3D position and rotation) of the object.

Parameters pose (ars.utils.geometry.Transform) –

set_position(pos)
Set the orientation of the object.

Parameters pos (3-sequence of floats) – position

set_rotation(rot)
Set the orientation of the object.

Parameters rot (9-sequence of floats) – rotation matrix

update_actor()
If there is no actor, it won’t do anything

class Simulation(FPS, STEPS_PF)
Bases: object

actors
Return a dict with each object actor indexed by the object name.

add_axes()

add_ball_socket_joint(name, obj1, obj2, anchor)
Adds a “ball and socket” joint between obj1 and obj2, at the specified anchor. If anchor is None, it will be
set equal to the position of obj2.

46 Chapter 2. Contents

ARS, Release 0.5b1

add_basic_simulation_objects(gravity=(0.0, -9.81, 0.0))
Create the basic simulation objects needed for physics and collision such as a contact group (holds tempo-
rary contact joints generated during collisions), a simulation ‘world’ (where physics objects are processed)
and a collision space (the same thing for geoms and their intersections).

Parameters gravity (3 floats tuple.) – Gravity acceleration.

add_box(size, center, mass=None, density=None)

add_capsule(length, radius, center, mass=None, density=None)

add_cylinder(length, radius, center, mass=None, density=None)

add_fixed_joint(obj1, obj2)

add_floor(normal=(0, 1, 0), dist=0, box_size=(5, 0.1, 5), box_center=(0, 0, 0), color=(0.2, 0.5, 0.5))
Create a plane geom to simulate a floor. It won’t be used explicitly later (space object has a reference to it)

add_joint(sim_joint)

add_object(sim_object)
Add sim_object to the internal dictionary of simulated objects.

If its name equals an already registered key, it will be modified using its string representation, for example:

>>> add_object(sim_object)
sphere/<ars.model.simulator.SimulatedBody object at 0x3a4bed0>

Parameters sim_object (SimulatedObject) – object to add

Returns name/key of the object

Return type string

add_rotary_joint(name, obj1, obj2, anchor, axis)
Adds a rotary joint between obj1 and obj2, at the specified anchor and with the given axis. If anchor is
None, it will be set equal to the position of obj2

add_slider_joint(name, obj1, obj2, axis)
Add a jo.Slider joint between obj1 and obj2.

The only movement allowed is translation along axis.

Returns the name under which the slider was stored, which could be different from the given
name

add_sphere(radius, center, mass=None, density=None)

add_trimesh_floor(vertices, faces, center=(0, 0, 0), color=(0.2, 0.5, 0.5))

add_universal_joint(obj1, obj2, anchor, axis1, axis2)

collision_space

get_bodies()
Return a list with all the bodies included in the simulation.

Returns list of SimulatedBody objects

get_joint(name)

get_object(name)

gravity

joints

2.5. ars 47

ARS, Release 0.5b1

objects

on_idle()

perform_sim_steps_per_frame()

sim_time

time_step

update_actors()
Update pose of each simulated object’s corresponding actor.

signals Module This module contains string values defining different signals related to the
ars.model.simulator package.

utils Package

containers Module
class Queue

Bases: object

FIFO

clear()
Remove all elements of the queue

convert_to_list()
Return the elements in an ordered list

count()

is_empty()

pull()
Remove and return the first element of the queue

put(element)
Appends the element as the last object of the queue

generic Module Generic utility functions to

• write variables and tuples to file

• write and read setting from a file

• modify and create tuples.

get_current_epoch_time()
Return the current time in seconds since the Epoch.

Fractions of a second may be present if the OS provides them (UNIX-like do).

Returns number of seconds since the Epoch

Return type float

insert_in_tuple(tuple_, index, item_)

nested_iterable_to_tuple(iterable_)

read_settings(filename, section)
Read section from settings file at filename.

48 Chapter 2. Contents

ARS, Release 0.5b1

Parameters

• filename (str) – settings file

• section (str) – settings section

Returns settings section dictionary

Return type dict

Example:

>>> read_settings('test.cfg', 'mySection')
{'a_key': 1.1111, 'another_key': False}

write_settings(filename, section, mapped_values)
Write mapped_values at section in settings file at filename.

Parameters

• filename (str) – settings file

• section (str) – settings section

• mapped_values (dict) – values to write

Example:

>>> write_settings('test.cfg', 'mySection', {'a_key': 1.1111, 'another_key': False})

write_tuple_to_file(text_file, tuple_)

write_var_to_file(text_file, var)

geometry Module
class Transform(pos=None, rot=None)

Bases: object

An homogeneous transform.

It is a composition of rotation and translation. Mathematically it can be expressed as⎡⎢⎢⎣ 𝑅 𝑇

0 0 0 1

⎤⎥⎥⎦
where R is the 3x3 submatrix describing rotation and T is the 3x1 submatrix describing translation.

source: http://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters#Denavit-Hartenberg_matrix

Constructor.

With empty arguments it’s just a 4x4 identity matrix.

Parameters

• pos (tuple, numpy.ndarray or None) – a size 3 vector, or 3x1 or 1x3 matrix

• rot (tuple, numpy.ndarray or None) – 3x3 or 9x1 rotation matrix

get_long_tuple()

get_rotation(as_numpy=False)
Get the rotation component (matrix).

2.5. ars 49

http://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters#Denavit-Hartenberg_matrix

ARS, Release 0.5b1

Parameters as_numpy – whether to return a numpy object or a tuple

Returns 3x3 rotation matrix

Return type tuple of tuples or numpy.ndarray

get_translation(as_numpy=False)
Get the translation component (vector).

Parameters as_numpy – whether to return a numpy object or a tuple

Returns 3-sequence

Return type tuple or numpy.ndarray

matrix
Return matrix that contains the transform values.

Returns 4x4 matrix

Return type numpy.ndarray
calc_compass_angle(rot)

Return the angle around the vertical axis with respect to the X+ axis, i.e. the angular orientation inherent of a
rotation matrix rot, constrained to the plane aligned with the horizon (XZ, since the vertical axis is Y).

calc_inclination(rot)
Return the inclination (as pitch and roll) inherent of rotation matrix rot, with respect to the plane (XZ,
since the vertical axis is Y). pitch is the rotation around Z and roll around Y.

Examples:

>>> rot = calc_rotation_matrix((1.0, 0.0, 0.0), pi/6)
>>> pitch, roll = gemut.calc_inclination(rot)
0.0, pi/6

>>> rot = calc_rotation_matrix((0.0, 1.0, 0.0), whatever)
>>> pitch, roll = gemut.calc_inclination(rot)
0.0, 0.0

>>> rot = calc_rotation_matrix((0.0, 0.0, 1.0), pi/6)
>>> pitch, roll = gemut.calc_inclination(rot)
pi/6, 0.0

calc_rotation_matrix(axis, angle)
Return the row-major 3x3 rotation matrix defining a rotation of magnitude angle around axis.

Formula is the same as the one presented here (as of 2011.12.01): http://goo.gl/RkW80

𝑅 =

⎡⎣ cos 𝜃 + 𝑢2𝑥 (1− cos 𝜃) 𝑢𝑥𝑢𝑦 (1− cos 𝜃)− 𝑢𝑧 sin 𝜃 𝑢𝑥𝑢𝑧 (1− cos 𝜃) + 𝑢𝑦 sin 𝜃
𝑢𝑦𝑢𝑥 (1− cos 𝜃) + 𝑢𝑧 sin 𝜃 cos 𝜃 + 𝑢2𝑦 (1− cos 𝜃) 𝑢𝑦𝑢𝑧 (1− cos 𝜃)− 𝑢𝑥 sin 𝜃
𝑢𝑧𝑢𝑥 (1− cos 𝜃)− 𝑢𝑦 sin 𝜃 𝑢𝑧𝑢𝑦 (1− cos 𝜃) + 𝑢𝑥 sin 𝜃 cos 𝜃 + 𝑢2𝑧 (1− cos 𝜃)

⎤⎦
The returned matrix format is length-9 tuple.

get_body_relative_vector(body, vector)
Return the 3-vector vector transformed into the local coordinate system of ODE body ‘body’

make_OpenGL_matrix(rot, pos)
Return an OpenGL compatible (column-major, 4x4 homogeneous) transformation matrix from ODE compatible
(row-major, 3x3) rotation matrix rotation and position vector position.

The returned matrix format is length-9 tuple.

50 Chapter 2. Contents

http://goo.gl/RkW80

ARS, Release 0.5b1

rot_matrix_to_euler_angles(rot)
Return the 3-1-3 Euler angles phi, theta and psi (using the x-convention) corresponding to the rotation matrix
rot, which is a tuple of three 3-element tuples, where each one is a row (what is called row-major order).

Using the x-convention, the 3-1-3 Euler angles phi, theta and psi (around the Z, X and again the Z-axis) can be
obtained as follows:

𝜑 = arctan 2(𝐴31, 𝐴32)

𝜃 = arccos(𝐴33)

𝜓 = − arctan 2(𝐴13, 𝐴23)

http://en.wikipedia.org/wiki/Rotation_representation_(mathematics)%23Rotation_matrix_.E2.86.94_Euler_angles

rot_matrix_to_hom_transform(rot)
Convert a rotation matrix to a homogeneous transform.

source: transform.r2t in Corke’s Robotic Toolbox (python)

Parameters rot (a tuple, a tuple of tuples or numpy.ndarray) – 3x3 rotation matrix

mathematicalModule Functions to perform operations over vectors and matrices; deal with homogeneous trans-
forms; convert angles and other structures.

acos_dot3(vector1, vector2)
Return the angle between unit 3-dimension vector1 and vector2.

add3(vector1, vector2)
Return the sum of 3-dimension vector1 and vector2.

calc_acceleration(time_step, vel0, vel1)
Calculate the vectorial substraction vel1 - vel0 divided by time step. If any of the vectors is None,
then None is returned.

vel1 is the velocity measured time_step seconds after vel0.

cross_product(vector1, vector2)
Return the cross product of 3-dimension vector1 and vector2.

degrees_to_radians(degrees_)

dist3(vector1, vector2)
Return the distance between point 3-dimension vector1 and vector2.

div_by_scalar3(vector, scalar)
Return 3-dimension vector divided by scalar.

dot_product(vec1, vec2)
Efficient dot-product operation between two vectors of the same size. source:
http://docs.python.org/library/itertools.html

dot_product3(vector1, vector2)
Return the dot product of 3-dimension vector1 and vector2.

length2(vector)
Return the length of a 2-dimension vector.

length3(vector)
Return the length of a 3-dimension vector.

matrix_as_3x3_tuples(tuple_9)
Return tuple_9 as a 3-tuple of 3-tuples.

Parameters tuple_9 – tuple of 9 elements

2.5. ars 51

http://en.wikipedia.org/wiki/Rotation_representation_(mathematics)%23Rotation_matrix_.E2.86.94_Euler_angles
http://docs.python.org/library/itertools.html

ARS, Release 0.5b1

Returns tuple_9 formatted as tuple of tuples

matrix_as_tuple(matrix_)
Convert matrix_ to a tuple.

Example:

>>> matrix_as_tuple(((1, 2), (3, 4)))
(1, 2, 3, 4)

Parameters matrix (tuple) – nested tuples

Returns matrix_ flattened as a tuple

Return type tuple

matrix_multiply(matrix1, matrix2)
Return the matrix multiplication of matrix1 and matrix2.

Parameters

• matrix1 – LxM matrix

• matrix2 – MxN matrix

Returns LxN matrix, product of matrix1 and matrix2

Return type tuple of tuples

mult_by_scalar3(vector, scalar)
Return 3-dimension vector multiplied by scalar.

neg3(vector)
Return the negation of 3-dimension vector.

norm3(vector)
Return the unit length vector parallel to 3-dimension vector.

np_matrix_to_tuple(array_)
Convert Numpy 2D array (i.e. matrix) to a tuple of tuples.

source: http://stackoverflow.com/a/10016379/556413

Example:

>>> arr = numpy.array(((2, 2), (2, -2)))
>>> np_matrix_to_tuple(arr)
((2, 2), (2, -2))

Parameters array (numpy.ndarray) – 2D array (i.e. matrix)

Returns matrix as tuple of tuples

project3(vector, unit_vector)
Return projection of 3-dimension vector onto unit 3-dimension unit_vector.

radians_to_degrees(radians_)

rotate3(rot, vector)
Return the rotation of 3-dimension vector by 3x3 (row major) matrix rot.

sign(x)
Return 1.0 if x is positive, -1.0 otherwise.

52 Chapter 2. Contents

http://stackoverflow.com/a/10016379/556413

ARS, Release 0.5b1

sub3(vector1, vector2)
Return the difference between 3-dimension vector1 and vector2.

transpose3(matrix)
Return the inversion (transpose) of 3x3 rotation matrix matrix.

unitize(vector_)
Unitize a vector, i.e. return a unit-length vector parallel to vector.

vec3_degrees_to_radians(vector_)

vec3_radians_to_degrees(vector_)

vector_matrix_vector(vector_, matrix_)
Return the product of vector_ transposed, matrix_ and vector again, which is a scalar value.

𝑣⊤M𝑣

z_axis(rot)
Return the z-axis vector from 3x3 (row major) rotation matrix rot.

version Module
get_hg_changeset()

Return the global revision id that identifies the working copy.

To obtain the value it runs the command hg identify --id, whose short form is hg id -i.

>>> get_hg_changeset()
1a4b04cf687a
>>> get_hg_changeset()
1a4b04cf687a+

Note: When there are outstanding (i.e. uncommitted) changes in the working copy, a + character will be
appended to the current revision id.

get_hg_tip_timestamp()
Return a numeric identifier of the latest changeset of the current repository based on its timestamp.

To obtain the value it runs the command hg tip --template ’{date}’

>> get_hg_tip_timestamp() ‘20130328021918’

Based on: django.utils.get_git_changeset @ commit 9098504, and http://hgbook.red-
bean.com/read/customizing-the-output-of-mercurial.html

Django’s license is included at docs/Django BSD-LICENSE.txt

get_version(version=None, length=u’full’)
Return a PEP 386-compliant version number from version.

Parameters

• version (tuple of strings) – the value to format, expressed as a tuple of strings,
of length 5, with the element before last (i.e. version[3]) equal to any of the following:
(’alpha’, ’beta’, ’rc’, ’final’)

• length (basestring) – the format of the returned value, equal to any of the following:
(’short’, ’medium’, ’full’)

Returns version as a string

2.5. ars 53

http://hgbook.red-bean.com/read/customizing-the-output-of-mercurial.html
http://hgbook.red-bean.com/read/customizing-the-output-of-mercurial.html

ARS, Release 0.5b1

Return type str

>>> get_version(version=(0, 4, 0, 'alpha', 0))
0.4.dev20130401011455
>>> get_version(version=(0, 4, 0, 'alpha', 1))
0.4a1
>>> get_version(version=(0, 4, 1, 'alpha', 0))
0.4.1.dev20130401011455
>>> get_version(version=(0, 4, 1, 'alpha', 1))
0.4.1a1
>>> get_version(version=(0, 4, 0, 'beta', 0))
0.4b0
>>> get_version(version=(0, 4, 0, 'rc', 0))
0.4c0
>>> get_version(version=(0, 4, 0, 'final', 0))
0.4
>>> get_version(version=(0, 4, 0, 'final', 1))
0.4
>>> get_version(version=(0, 4, 1, 'final', 0))
0.4.1

>>> get_version(version=(0, 4, 0, 'alpha', 0), length='medium')
0.4.dev
>>> get_version(version=(0, 4, 0, 'alpha', 0), length='short')
0.4

Based on: django.utils.version @ commit 9098504. Django’s license is included at docs/Django
BSD-LICENSE.txt

Changelog

0.4a1 / 2013-04-13

• Blah

0.3a1 / 2012-10-17

• Buh

• Burrito

Language election

Articles

Why Python? by Eric Raymond on Apr 30, 2000 in Linux Journal. http://www.linuxjournal.com/article/3882

It was written more than 12 years ago when Python was far less powerful than today but, nonetheless, his opinion and
first experiences with the language may be quite similar to what happens to some people nowadays.

54 Chapter 2. Contents

http://www.linuxjournal.com/article/3882

ARS, Release 0.5b1

Language comparison

Ohloh

What is Ohloh? Ohloh is a free, public directory of Free and Open Source Software (FOSS) and the contributors
who create and maintain it. Ohloh Code is a publicly available, free code search site that indexes most of the
projects in Ohloh.

Note: Information retrieved on August 12th, 2012

Programming Language Statistics

2.7. Language election 55

ARS, Release 0.5b1

sources: C, C++, Java, Matlab & Python

Language comparison (monthly commits as percent of total)

The lines show the count of monthly commits made by source code developers. Commits including multiple languages
are counted once for each language. More

Combined

56 Chapter 2. Contents

https://www.ohloh.net/languages/c
https://www.ohloh.net/languages/cpp
https://www.ohloh.net/languages/java
https://www.ohloh.net/languages/matlab
https://www.ohloh.net/languages/python
http://meta.ohloh.net/compare_languages/

ARS, Release 0.5b1

sources: C, C++, Matlab, Java & Python | C, C++, Matlab & Python | C, C++ & Python

One on one

C vs Python

C++ vs Python

2.7. Language election 57

https://www.ohloh.net/languages/compare?measure=commits&percent=true&l0=cpp&l1=c&l3=matlab&l4=python&l5=java&l6=-1&commit=Update
https://www.ohloh.net/languages/compare?measure=commits&percent=true&l0=c&l1=cpp&l2=matlab&l4=python&l5=-1&commit=Update
https://www.ohloh.net/languages/compare?measure=commits&percent=true&l0=c&l1=cpp&l2=-1&l3=-1&l4=python&l5=-1&commit=Update

ARS, Release 0.5b1

Matlab vs Python

Java vs Python

sources: C & Python | C++ & Python | Matlab & Python | Java & Python

58 Chapter 2. Contents

https://www.ohloh.net/languages/compare?measure=commits&percent=true&l0=c&l1=-1&l2=-1&l3=python&l4=-1&commit=Update
https://www.ohloh.net/languages/compare?measure=commits&percent=true&l0=-1&l1=cpp&l2=python&l3=-1&commit=Update
https://www.ohloh.net/languages/compare?measure=commits&percent=true&l0=-1&l1=-1&l2=matlab&l3=python&l4=-1&commit=Update
https://www.ohloh.net/languages/compare?commit=Update&l0=java&l1=python&l2=-1&measure=commits&percent=true

ARS, Release 0.5b1

Python

About Python

Basic information

If you are curious about Python, its history, how and where it is used, check out the official FAQ. If unfamiliar with
some terms, see the glossary.

Python resources

Tutorials and guides

If you would like to get a taste of Python get started with this tutorial (included in the official documentation) which
is very straight forward and does not presume any previous knowledge of the language. However, it is recommended
to have at least Python installed (see next section).

Anothe way to get started from zero is the Beginner’s Guide to Python.

Python on Windows

Although Python runs on Windows with no problems, sometimes it’s difficult to get started in this OS because of some
small details that interfere with what whould be a smooth process on a *Nix system.

Syntax (e.g. path delimiters), permissions, end-of-line character, etc, can stop the user from doing what he should be
doing, i.e. learning the language, instead of dealing with Windows annoyances (for more information on this topic, go
to annoyances.org).

That’s why there is a special section on the Python documentation called Python on Windows FAQ. So, if you are
having issues with Python stuff on a Windows OS, go read that FAQ.

Python(x,y)

Python(x,y) is a free Python distribution providing a ready-to-use scientific development software for
numerical computations, data analysis and data visualization based on Python programming language, Qt
graphical user interfaces (and development framework) and Spyder interactive development environment.
Its purpose is to help scientific programmers used to interpreted languages (such as MATLAB or IDL) or
compiled languages (C/C++ or Fortran) to switch to Python.

It is very popular for Windows, but there is a GNU/Linux version too.

Python installation

To have Python installed means you have installed a Python interpreter. In a UNIX-like system (e.g. GNU-Linux,
Mac OS, etc) you probably won’t need to because it is often included in the base installation. On Microsoft Windows,
however, it is not so you won’t have it unless it was a dependency for some software (e.g. GIMP). Curious about that?
Go read Why is Python Installed on my Computer? FAQ

2.8. Python 59

http://docs.python.org/faq/index.html
http://docs.python.org/glossary.html
http://docs.python.org/tutorial/
http://docs.python.org/
http://wiki.python.org/moin/BeginnersGuide
http://www.annoyances.org/
http://docs.python.org/faq/windows.html
http://code.google.com/p/pythonxy/
https://code.google.com/p/pythonxy-linux/
http://docs.python.org/faq/installed.html#why-is-python-installed-on-my-machine

ARS, Release 0.5b1

Online interpreters/shells

If you can’t or don’t want to install Python, you can resort to online interpreters made available by some generous or
commercial efforts. Here are free alternatives:

• The repl.it project is an attempt to create an online environment for interactively exploring programming lan-
guages. It provides a fully-featured terminal emulator and code editor, powered by interpreter engines for more
than 15 languages. All our interpreters are written in (or compiled to) JavaScript, and run completely on the
user’s device, regardless or whether it’s a desktop, laptop or phone.

• PythonAnywhere is a Python development and hosting environment that displays in your web browser and runs
on our servers. They’re already set up with everything you need. It’s easy to use, fast, and powerful. There’s
even a useful free plan.

• Try IPython from your browser! IPython is an enhanced interactive Python interpreter, offering tab completion,
object introspection, and much more. It’s running on the right-hand side of this page, so you can try it out right
now.

• codepad is an online compiler/interpreter, and a simple collaboration tool.

• Interactive server-side Python (2.5.2) shell for Google App Engine

• Ideone is something more than a pastebin; it’s an online compiler and debugging tool which allows to compile
and run code online in more than 40 programming languages.

• http://mathcs.holycross.edu/~kwalsh/python/

• http://people.csail.mit.edu/pgbovine/python/

• http://www.trypython.org/ requires Microsoft Silverlight :(

Other

http://www.rackspace.com/knowledge_center/web-resources/top-50-resources-for-programming-web-applications-with-python
Python is a general purpose, object-oriented programming language that has achieved popularity because of
its readability and clear syntax. Guido van Rossum created Python in late 1980s. It is a ‘high level’ scripting
language used by most programmers for its simplicity of use. Python can be written once and run on any
computer. It’s a ‘multi paradigm programming language’ compatible with many other programming languages
such as .NET, CORBA, Java, Perl.

Dave Kuhlman’s page. Open Source software projects by Dave Kuhlman.

These projects are implemented in or for Python. These projects center around XML, parsing XML, etc.
They provide tools for building data mapping and Web services. Keywords are: python, xml, editor, text
processing, python training.

Developers FAQ

See also:

http://docs.python.org/devguide/faq

Version control

See also:

http://docs.python.org/devguide/faq#version-control

60 Chapter 2. Contents

http://repl.it/
http://www.pythonanywhere.com/
http://www.pythonanywhere.com/try-ipython/
http://codepad.org/
http://shell.appspot.com/
http://ideone.com/
http://mathcs.holycross.edu/~kwalsh/python/
http://people.csail.mit.edu/pgbovine/python/
http://www.trypython.org/
http://www.rackspace.com/knowledge_center/web-resources/top-50-resources-for-programming-web-applications-with-python
http://cutter.rexx.com/~dkuhlman/
http://docs.python.org/devguide/faq
http://docs.python.org/devguide/faq#version-control

ARS, Release 0.5b1

About the documentation

When documenting ARS, some good practices are required. However, if you are not familiar with the tools or guide-
lines used, please do contribute by sending plain text and someone else will take care of including it in the proper
way.

Style guide

Although not yet enforced, the Python documentation style guide is the reference for writing ARS’s documentation.

Generation

This documentation is generated automatically by Sphinx from rst (reStructuredText) files and the docstrings in the
code, both of which are in the project’s repository.

For more information about Sphinx, see http://sphinx.pocoo.org/

For more information about reStructuredText, see http://docutils.sourceforge.net/rst.html and
http://sphinx.pocoo.org/rest.html

2.10. About the documentation 61

http://docs.python.org/devguide/documenting.html
http://sphinx.pocoo.org/
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/rest.html

ARS, Release 0.5b1

62 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

63

ARS, Release 0.5b1

64 Chapter 3. Indices and tables

Python Module Index

_
ars.__init__, 10

a
ars.app, 11

c
ars.constants, 11

e
ars.exceptions, 11

g
ars.graphics.base, 13
ars.graphics.vtk_adapter, 15

l
ars.lib, 16
ars.lib.pydispatch, 16
ars.lib.pydispatch.dispatcher, 17
ars.lib.pydispatch.errors, 19
ars.lib.pydispatch.robust, 19
ars.lib.pydispatch.robustapply, 19
ars.lib.pydispatch.saferef, 20

m
ars.model.collision.base, 21
ars.model.collision.ode_adapter, 27
ars.model.collision.ode_objects_factories,

29
ars.model.collision.signals, 32
ars.model.contrib, 32
ars.model.geometry, 32
ars.model.physics.base, 32
ars.model.physics.ode_adapter, 34
ars.model.physics.ode_objects_factories,

36
ars.model.physics.signals, 37
ars.model.robot.joints, 37
ars.model.robot.sensors, 40

ars.model.robot.signals, 44
ars.model.simulator, 45
ars.model.simulator.signals, 48

u
ars.utils.containers, 48
ars.utils.generic, 48
ars.utils.geometry, 49
ars.utils.mathematical, 51
ars.utils.version, 53

65

ARS, Release 0.5b1

66 Python Module Index

Index

A
Accelerometer (class in ars.model.robot.sensors), 41
acos_dot3() (in module ars.utils.mathematical), 51
ActionMap (class in ars.app), 11
actor (Entity attribute), 14
actor (SimulatedObject attribute), 45
actors (Simulation attribute), 46
ActuatedJoint (class in ars.model.robot.joints), 37
ActuatedJointSensor (class in ars.model.robot.sensors),

41
adapter (Entity attribute), 14, 16
add() (ActionMap method), 11
add3() (in module ars.utils.mathematical), 51
add_axes() (Simulation method), 46
add_ball_socket_joint() (Simulation method), 46
add_basic_simulation_objects() (Simulation method), 46
add_box() (Simulation method), 47
add_capsule() (Simulation method), 47
add_cylinder() (Simulation method), 47
add_fixed_joint() (Simulation method), 47
add_floor() (Simulation method), 47
add_force() (Slider method), 40
add_joint() (Simulation method), 47
add_object() (Engine method), 14, 15
add_object() (Simulation method), 47
add_objects_list() (Engine method), 14
add_rotary_joint() (Simulation method), 47
add_slider_joint() (Simulation method), 47
add_sphere() (Simulation method), 47
add_torque() (Rotary method), 39
add_torque() (SimulatedJoint method), 45
add_trimesh_floor() (Simulation method), 47
add_universal_joint() (Simulation method), 47
angle (Rotary attribute), 39
angle_rate (Rotary attribute), 39
any_sender (BaseSignalSensor attribute), 41
are_geoms_connected() (ars.model.collision.base.Engine

class method), 22
are_geoms_connected() (ars.model.collision.ode_adapter.Engine

class method), 27

ars.__init__ (module), 10
ars.app (module), 11
ars.constants (module), 11
ars.exceptions (module), 11
ars.graphics.base (module), 13
ars.graphics.vtk_adapter (module), 15
ars.lib (module), 16
ars.lib.pydispatch (module), 16
ars.lib.pydispatch.dispatcher (module), 17
ars.lib.pydispatch.errors (module), 19
ars.lib.pydispatch.robust (module), 19
ars.lib.pydispatch.robustapply (module), 19
ars.lib.pydispatch.saferef (module), 20
ars.model.collision.base (module), 21
ars.model.collision.ode_adapter (module), 27
ars.model.collision.ode_objects_factories (module), 29
ars.model.collision.signals (module), 32
ars.model.contrib (module), 32
ars.model.geometry (module), 32
ars.model.physics.base (module), 32
ars.model.physics.ode_adapter (module), 34
ars.model.physics.ode_objects_factories (module), 36
ars.model.physics.signals (module), 37
ars.model.robot.joints (module), 37
ars.model.robot.sensors (module), 40
ars.model.robot.signals (module), 44
ars.model.simulator (module), 45
ars.model.simulator.signals (module), 48
ars.utils.containers (module), 48
ars.utils.generic (module), 48
ars.utils.geometry (module), 49
ars.utils.mathematical (module), 51
ars.utils.version (module), 53
ArsError, 11
attach_body() (Geom method), 24, 28
attach_geom() (Body method), 32
Axes (class in ars.graphics.base), 13
Axes (class in ars.graphics.vtk_adapter), 15

B
BACKGROUND_COLOR (Program attribute), 12

67

ARS, Release 0.5b1

BallSocket (class in ars.model.robot.joints), 37
BaseSignalSensor (class in ars.model.robot.sensors), 41
BaseSourceSensor (class in ars.model.robot.sensors), 41
BasicShape (class in ars.model.collision.base), 21
BasicShape (class in ars.model.collision.ode_adapter), 27
body (BodySensor attribute), 42
Body (class in ars.graphics.base), 13
Body (class in ars.graphics.vtk_adapter), 15
Body (class in ars.model.physics.base), 32
Body (class in ars.model.physics.ode_adapter), 34
body (SimulatedBody attribute), 45
body1 (Joint attribute), 38
body1 (JointFeedback attribute), 38
body2 (Joint attribute), 38
body2 (JointFeedback attribute), 39
BodySensor (class in ars.model.robot.sensors), 42
BoundMethodWeakref (class in

ars.lib.pydispatch.saferef), 20
Box (class in ars.graphics.base), 13
Box (class in ars.graphics.vtk_adapter), 15
Box (class in ars.model.collision.base), 21
Box (class in ars.model.collision.ode_adapter), 27
Box (class in ars.model.physics.base), 33
Box (class in ars.model.physics.ode_adapter), 35

C
calc_acceleration() (in module ars.utils.mathematical), 51
calc_collision() (ars.model.collision.base.Engine class

method), 22
calc_collision() (ars.model.collision.ode_adapter.Engine

class method), 28
calc_compass_angle() (in module ars.utils.geometry), 50
calc_faces() (HeightfieldTrimesh static method), 24
calc_filename() (ScreenshotRecorder method), 14
calc_inclination() (in module ars.utils.geometry), 50
calc_potential_energy() (Body method), 32
calc_rotation_kinetic_energy() (Body method), 32
calc_rotation_matrix() (in module ars.utils.geometry), 50
calc_translation_kinetic_energy() (Body method), 32
calc_vertices() (ConstantHeightfieldTrimesh static

method), 22
calculateKey() (ars.lib.pydispatch.saferef.BoundMethodWeakref

class method), 20
call() (ActionMap method), 11
CAMERA_POSITION (Program attribute), 12
Capsule (class in ars.graphics.base), 14
Capsule (class in ars.graphics.vtk_adapter), 15
Capsule (class in ars.model.collision.base), 21
Capsule (class in ars.model.collision.ode_adapter), 27
Capsule (class in ars.model.physics.base), 33
Capsule (class in ars.model.physics.ode_adapter), 35
clear() (Queue method), 48
clear_closer_contact() (Ray method), 25
clear_contacts() (Ray method), 25

clear_last_contact() (Ray method), 25
collide() (Space method), 26, 29
collision_space (Simulation attribute), 47
Cone (class in ars.graphics.base), 14
Cone (class in ars.graphics.vtk_adapter), 15
Cone (class in ars.model.collision.base), 21
Cone (class in ars.model.physics.base), 33
connect() (in module ars.lib.pydispatch.dispatcher), 17
ConstantHeightfieldTrimesh (class in

ars.model.collision.base), 21
contact_group (NearCallbackArgs attribute), 25
ContactGroup (class in ars.model.collision.base), 22
ContactGroup (class in ars.model.collision.ode_adapter),

27
convert_color() (in module ars.constants), 11
convert_to_list() (Queue method), 48
count() (Queue method), 48
create_ode_box() (in module

ars.model.collision.ode_objects_factories),
29

create_ode_box() (in module
ars.model.physics.ode_objects_factories),
36

create_ode_capsule() (in module
ars.model.collision.ode_objects_factories),
29

create_ode_capsule() (in module
ars.model.physics.ode_objects_factories),
36

create_ode_cylinder() (in module
ars.model.collision.ode_objects_factories),
30

create_ode_cylinder() (in module
ars.model.physics.ode_objects_factories),
36

create_ode_hash_space() (in module
ars.model.collision.ode_objects_factories),
30

create_ode_joint_group() (in module
ars.model.collision.ode_objects_factories),
30

create_ode_plane() (in module
ars.model.collision.ode_objects_factories),
30

create_ode_ray() (in module
ars.model.collision.ode_objects_factories),
31

create_ode_simple_space() (in module
ars.model.collision.ode_objects_factories),
31

create_ode_sphere() (in module
ars.model.collision.ode_objects_factories),
31

create_ode_sphere() (in module

68 Index

ARS, Release 0.5b1

ars.model.physics.ode_objects_factories),
36

create_ode_trimesh() (in module
ars.model.collision.ode_objects_factories),
31

create_ode_world() (in module
ars.model.physics.ode_objects_factories),
37

create_screenshot_recorder() (Program method), 12
create_sim_objects() (Program method), 12
create_simulation() (Program method), 12
cross_product() (in module ars.utils.mathematical), 51
Cylinder (class in ars.graphics.base), 14
Cylinder (class in ars.graphics.vtk_adapter), 15
Cylinder (class in ars.model.collision.base), 22
Cylinder (class in ars.model.collision.ode_adapter), 27
Cylinder (class in ars.model.physics.base), 33
Cylinder (class in ars.model.physics.ode_adapter), 35

D
degrees_to_radians() (in module ars.utils.mathematical),

51
depth (RayContactData attribute), 26
disconnect() (in module ars.lib.pydispatch.dispatcher), 17
DispatcherError, 19
DispatcherKeyError, 19
DispatcherTypeError, 19
dist3() (in module ars.utils.mathematical), 51
div_by_scalar3() (in module ars.utils.mathematical), 51
dot_product() (in module ars.utils.mathematical), 51
dot_product3() (in module ars.utils.mathematical), 51

E
empty() (ContactGroup method), 22, 27
Engine (class in ars.graphics.base), 14
Engine (class in ars.graphics.vtk_adapter), 15
Engine (class in ars.model.collision.base), 22
Engine (class in ars.model.collision.ode_adapter), 27
Engine (class in ars.model.physics.base), 33
Engine (class in ars.model.physics.ode_adapter), 35
Entity (class in ars.graphics.base), 14
Entity (class in ars.graphics.vtk_adapter), 16

F
file_extension (ScreenshotRecorder attribute), 14, 16
finalize() (Program method), 13
finalize_window() (Engine method), 14, 15
Fixed (class in ars.model.robot.joints), 38
FLOOR_BOX_SIZE (Program attribute), 12
force1 (JointFeedback attribute), 39
force2 (JointFeedback attribute), 39
FPS (Program attribute), 12
function() (in module ars.lib.pydispatch.robustapply), 19

G
Geom (class in ars.model.collision.base), 24
Geom (class in ars.model.collision.ode_adapter), 28
get() (ActionMap method), 11
get_angular_velocity() (Body method), 32, 34
get_arg() (SensorData method), 43
get_args() (SensorData method), 43
get_attached_body() (Geom method), 24
get_attached_geom() (Body method), 32
get_bodies() (Simulation method), 47
get_body_relative_vector() (in module

ars.utils.geometry), 50
get_center_of_gravity() (Body method), 32, 34
get_closer_contact() (Ray method), 25
get_color() (Body method), 13, 15
get_current_epoch_time() (in module ars.utils.generic),

48
get_function() (ActionMap method), 11
get_hg_changeset() (in module ars.utils.version), 53
get_hg_tip_timestamp() (in module ars.utils.version), 53
get_inertia_tensor() (Body method), 32, 34
get_joint() (Simulation method), 47
get_kwarg() (SensorData method), 43
get_kwargs() (SensorData method), 43
get_last_contact() (Ray method), 25
get_length() (Ray method), 25, 29
get_linear_velocity() (Body method), 33, 34
get_long_tuple() (Transform method), 49
get_mass() (Body method), 33, 34
get_measurement() (BaseSourceSensor method), 42
get_name() (SimulatedObject method), 45
get_object() (Simulation method), 47
get_pose() (SimulatedPhysicsObject method), 46
get_position() (Body method), 33, 34
get_position() (Geom method), 24, 28
get_position() (SimulatedBody method), 45
get_position() (SimulatedJoint method), 45
get_position() (SimulatedPhysicsObject method), 46
get_ray() (Laser method), 43
get_rotation() (Body method), 33, 34
get_rotation() (Geom method), 24, 28
get_rotation() (SimulatedBody method), 45
get_rotation() (SimulatedJoint method), 45
get_rotation() (SimulatedPhysicsObject method), 46
get_rotation() (Transform method), 49
get_saved_velocities() (Body method), 33
get_time() (SensorData method), 43
get_translation() (Transform method), 50
get_version() (in module ars.__init__), 10
get_version() (in module ars.utils.version), 53
getAllReceivers() (in module

ars.lib.pydispatch.dispatcher), 18
getReceivers() (in module ars.lib.pydispatch.dispatcher),

18

Index 69

ARS, Release 0.5b1

GPS (class in ars.model.robot.sensors), 42
gravity (Simulation attribute), 47
gravity (World attribute), 34, 35

H
has_actor() (SimulatedObject method), 45
has_key() (ActionMap method), 11
height (Cone attribute), 33
HeightfieldTrimesh (class in ars.model.collision.base), 24

I
ignore_connected (NearCallbackArgs attribute), 25
Inclinometer (class in ars.model.robot.sensors), 42
inner_object (Body attribute), 33
inner_object (ContactGroup attribute), 22
inner_object (Geom attribute), 24
inner_object (Space attribute), 26
inner_object (World attribute), 34
insert_in_tuple() (in module ars.utils.generic), 48
is_empty() (Queue method), 48
is_ray() (ars.model.collision.base.Engine class method),

22
is_ray() (ars.model.collision.ode_adapter.Engine class

method), 28
is_repeat() (ActionMap method), 11
is_updatable() (SimulatedObject method), 46

J
Joint (class in ars.model.robot.joints), 38
joint (JointSensor attribute), 42
joint (SimulatedJoint attribute), 45
JointError, 11
JointFeedback (class in ars.model.robot.joints), 38
JointForce (class in ars.model.robot.sensors), 42
JointPower (class in ars.model.robot.sensors), 42
joints (Simulation attribute), 47
JointSensor (class in ars.model.robot.sensors), 42
JointTorque (class in ars.model.robot.sensors), 42

K
KineticEnergy (class in ars.model.robot.sensors), 42

L
Laser (class in ars.model.robot.sensors), 43
length (Capsule attribute), 33
length (Cylinder attribute), 33
length2() (in module ars.utils.mathematical), 51
length3() (in module ars.utils.mathematical), 51
liveReceivers() (in module ars.lib.pydispatch.dispatcher),

18

M
make_OpenGL_matrix() (in module ars.utils.geometry),

50

matrix (Transform attribute), 50
matrix_as_3x3_tuples() (in module

ars.utils.mathematical), 51
matrix_as_tuple() (in module ars.utils.mathematical), 52
matrix_multiply() (in module ars.utils.mathematical), 52
mult_by_scalar3() (in module ars.utils.mathematical), 52
MultipleSignalsSensor (class in ars.model.robot.sensors),

43

N
near_callback() (ars.model.collision.base.Engine class

method), 23
NearCallbackArgs (class in ars.model.collision.base), 25
neg3() (in module ars.utils.mathematical), 52
nested_iterable_to_tuple() (in module ars.utils.generic),

48
norm3() (in module ars.utils.mathematical), 52
normal (RayContactData attribute), 26
np_matrix_to_tuple() (in module ars.utils.mathematical),

52

O
objects (Simulation attribute), 47
offset_by_object() (SimulatedPhysicsObject method), 46
offset_by_position() (SimulatedPhysicsObject method),

46
on_action_selection() (Program method), 13
on_change() (BaseSourceSensor method), 42
on_change() (Laser method), 43
on_idle() (Simulation method), 48
on_pre_frame() (Program method), 13
on_pre_step() (Program method), 13
on_send() (BaseSignalSensor method), 41

P
perform_sim_steps_per_frame() (Simulation method), 48
PhysicsEngineException, 11
PhysicsObjectCreationError, 11
Plane (class in ars.model.collision.base), 25
Plane (class in ars.model.collision.ode_adapter), 29
position (RayContactData attribute), 26
position (Slider attribute), 40
position_rate (Slider attribute), 40
PotentialEnergy (class in ars.model.robot.sensors), 43
process_collision_contacts()

(ars.model.collision.base.Engine class method),
23

process_collision_contacts()
(ars.model.collision.ode_adapter.Engine
class method), 28

process_ray_collision_contacts()
(ars.model.collision.base.Engine class method),
23

70 Index

ARS, Release 0.5b1

process_ray_collision_contacts()
(ars.model.collision.ode_adapter.Engine
class method), 28

Program (class in ars.app), 11
project3() (in module ars.utils.mathematical), 52
pull() (Queue method), 48
put() (Queue method), 48

Q
Queue (class in ars.utils.containers), 48

R
radians_to_degrees() (in module ars.utils.mathematical),

52
radius (Capsule attribute), 33
radius (Cone attribute), 33
radius (Cylinder attribute), 33
radius (Sphere attribute), 34
Ray (class in ars.model.collision.base), 25
Ray (class in ars.model.collision.ode_adapter), 29
ray (RayContactData attribute), 26
RayContactData (class in ars.model.collision.base), 26
read_settings() (in module ars.utils.generic), 48
record_frame() (Program method), 13
remove_object() (Engine method), 14, 16
reset() (Engine method), 14, 16
reset_simulation() (Program method), 13
restart_window() (Engine method), 14, 16
robustApply() (in module ars.lib.pydispatch.robustapply),

20
rot_matrix_to_euler_angles() (in module

ars.utils.geometry), 50
rot_matrix_to_hom_transform() (in module

ars.utils.geometry), 51
Rotary (class in ars.model.robot.joints), 39
RotaryJointSensor (class in ars.model.robot.sensors), 43
rotate() (SimulatedPhysicsObject method), 46
rotate3() (in module ars.utils.mathematical), 52

S
safeRef() (in module ars.lib.pydispatch.saferef), 20
save_velocities() (Body method), 33
ScreenshotRecorder (class in ars.graphics.base), 14
ScreenshotRecorder (class in ars.graphics.vtk_adapter),

16
send() (in module ars.lib.pydispatch.dispatcher), 18
sender (BaseSignalSensor attribute), 41
sendExact() (in module ars.lib.pydispatch.dispatcher), 19
sendRobust() (in module ars.lib.pydispatch.robust), 19
SensorData (class in ars.model.robot.sensors), 43
SensorDataQueue (class in ars.model.robot.sensors), 44
set_color() (Body method), 13, 15
set_key_2_action_mapping() (Program method), 13
set_last_contact() (Ray method), 25

set_length() (Ray method), 26, 29
set_name() (SimulatedObject method), 46
set_pose() (Entity method), 14
set_pose() (SimulatedPhysicsObject method), 46
set_position() (Body method), 33, 34
set_position() (Geom method), 24, 29
set_position() (Laser method), 43
set_position() (SimulatedBody method), 45
set_position() (SimulatedJoint method), 45
set_position() (SimulatedPhysicsObject method), 46
set_rotation() (Body method), 33, 35
set_rotation() (Geom method), 24, 29
set_rotation() (Laser method), 43
set_rotation() (SimulatedBody method), 45
set_rotation() (SimulatedJoint method), 45
set_rotation() (SimulatedPhysicsObject method), 46
set_speed() (Rotary method), 39
set_time() (SensorData method), 44
shape (RayContactData attribute), 26
sign() (in module ars.utils.mathematical), 52
signal (JointForce attribute), 42
signal (JointTorque attribute), 42
signals (JointPower attribute), 42
sim (SimulationSensor attribute), 44
sim_time (Simulation attribute), 48
SimulatedBody (class in ars.model.simulator), 45
SimulatedJoint (class in ars.model.simulator), 45
SimulatedObject (class in ars.model.simulator), 45
SimulatedPhysicsObject (class in ars.model.simulator),

46
Simulation (class in ars.model.simulator), 46
SimulationSensor (class in ars.model.robot.sensors), 44
SingleSignalSensor (class in ars.model.robot.sensors), 44
size (Box attribute), 33
Slider (class in ars.model.robot.joints), 39
source (BaseSourceSensor attribute), 42
Space (class in ars.model.collision.base), 26
Space (class in ars.model.collision.ode_adapter), 29
Sphere (class in ars.graphics.base), 15
Sphere (class in ars.graphics.vtk_adapter), 16
Sphere (class in ars.model.collision.base), 26
Sphere (class in ars.model.collision.ode_adapter), 29
Sphere (class in ars.model.physics.base), 34
Sphere (class in ars.model.physics.ode_adapter), 35
start() (Program method), 13
start_window() (Engine method), 14, 16
step() (World method), 34, 35
STEPS_PER_FRAME (Program attribute), 12
sub3() (in module ars.utils.mathematical), 52
swap_faces_indices() (Trimesh static method), 27
SystemTotalEnergy (class in ars.model.robot.sensors), 44

T
time_step (Simulation attribute), 48

Index 71

ARS, Release 0.5b1

torque1 (JointFeedback attribute), 39
torque2 (JointFeedback attribute), 39
TotalEnergy (class in ars.model.robot.sensors), 44
Transform (class in ars.utils.geometry), 49
transpose3() (in module ars.utils.mathematical), 53
Trimesh (class in ars.graphics.base), 15
Trimesh (class in ars.graphics.vtk_adapter), 16
Trimesh (class in ars.model.collision.base), 26
Trimesh (class in ars.model.collision.ode_adapter), 29

U
unitize() (in module ars.utils.mathematical), 53
Universal (class in ars.model.robot.joints), 40
update_actor() (SimulatedPhysicsObject method), 46
update_actors() (Simulation method), 48

V
vec3_degrees_to_radians() (in module

ars.utils.mathematical), 53
vec3_radians_to_degrees() (in module

ars.utils.mathematical), 53
vector_matrix_vector() (in module

ars.utils.mathematical), 53
Velometer (class in ars.model.robot.sensors), 44

W
WINDOW_POSITION (Program attribute), 12
WINDOW_SIZE (Program attribute), 12
WINDOW_TITLE (Program attribute), 12
WINDOW_ZOOM (Program attribute), 12
World (class in ars.model.physics.base), 34
World (class in ars.model.physics.ode_adapter), 35
world (NearCallbackArgs attribute), 25
world_class (Engine attribute), 34, 35
write() (ScreenshotRecorder method), 15, 16
write_settings() (in module ars.utils.generic), 49
write_tuple_to_file() (in module ars.utils.generic), 49
write_var_to_file() (in module ars.utils.generic), 49

Z
z_axis() (in module ars.utils.mathematical), 53

72 Index

	Introduction
	So simple
	Official website
	Releases
	News

	Contents
	Installation
	About ARS
	External links
	FAQ
	ars
	Changelog
	Language election
	Python
	Developers FAQ
	About the documentation

	Indices and tables
	Python Module Index

